ObjectivesMedical crowdfunding is a rapidly growing practice where individuals leverage social networks to raise money for health-related needs. This practice has allowed many to access healthcare and avoid medical debt but has also raised a number of ethical concerns. A dominant criticism of this practice is that it is likely to increase inequities in access to healthcare if persons from relatively wealthy backgrounds, media connections, tech-savvy and educational attainments are best positioned to use and succeed with crowdfunding. However, limited data has been published to support this claim. Our objective in this paper is to assess this concern using socioeconomic data and information from crowdfunding campaigns.SettingTo assess this concern, we present an exploratory spatial analysis of a new dataset of crowdfunding campaigns for cancer-related care by Canadian residents.ParticipantsFour datasets were used: (1) a medical crowdfunding dataset that included cancer-related campaigns posted by Canadians, (2) 2016 Census Profile for aggregate dissemination areas, (3) aggregate dissemination area boundaries and (4) forward sortation area boundaries.ResultsOur exploratory spatial analysis demonstrates that use of crowdfunding for cancer-related needs in Canada corresponds with high income, home ownership and high educational attainment. Campaigns were also commonly located near city centres.ConclusionsThese findings support concerns that those in positions of relative socioeconomic privilege disproportionately use crowdfunding to address health-related needs. This study was not able to determine whether other socioeconomic dimensions such as race, gender, ethnicity, nationality and linguistic fluency are also correlated with use of medical crowdfunding. Thus, we call for further research to explore the relationship between socioeconomic variables and medical crowdfunding campaigning to explore these other socioeconomic variables and campaigns for needs unrelated to cancer.
Land cover change (LCC) is typically characterized by infrequent changes over space and time. Data-driven methods such as deep learning (DL) approaches have proven effective in many domains for predictive and classification tasks. When applied to geospatial data, sequential DL methods such as long short-term memory (LSTM) have yielded promising results in remote sensing and GIScience studies. However, the characteristics of geospatial datasets selected for use with these methods have demonstrated important implications on method performance. The number of data layers available, the rate of LCC, and inherent errors resulting from classification procedures are expected to influence model performance. Yet, it is unknown how these can affect compatibility with the LSTM method. As such, the main objective of this study is to explore the capacity of LSTM to forecast patterns that have emerged from LCC dynamics given varying temporal resolutions, persistent land cover classes, and auxiliary data layers pertaining to classification confidence. Stacked LSTM modeling approaches are applied to 17-year MODIS land cover datasets focused on the province of British Columbia, Canada. This geospatial data is reclassified to four major land cover (LC) classes during pre-processing procedures. The evaluation considers the dataset at variable temporal resolutions to demonstrate the significance of geospatial data characteristics on LSTM method performance in several scenarios. Results indicate that LSTM can be utilized for forecasting LCC patterns when there are few limitations on temporal intervals of the datasets provided. Likewise, this study demonstrates improved performance measures when there are classes that do not change. Furthermore, providing classification confidence data as ancillary input also demonstrated improved results when the number of timesteps or temporal resolution is limited. This study contributes to future applications of DL and LSTM methods for forecasting LCC.
An open problem impeding the use of deep learning (DL) models for forecasting land cover (LC) changes is their bias toward persistent cells. By providing sample weights for model training, LC changes can be allocated greater influence in adjustments to model internal parameters. The main goal of this research study was to implement and evaluate temporal and spatiotemporal sample weighting schemes that manage the influence of persistent and formerly changed areas. The proposed sample weighting schemes allocate higher weights to more recently changed areas based on the inverse temporal and spatiotemporal distance from previous changes occurring at a location or within the location’s neighborhood. Four spatiotemporal DL models (CNN-LSTM, CNN-GRU, CNN-TCN, and ConvLSTM) were used to compare the sample weighting schemes to forecast the LC changes of the Columbia-Shuswap Regional District in British Columbia, Canada, using data obtained from the MODIS annual LC dataset and other auxiliary spatial variables. The results indicate that the presented weighting schemes facilitated improvement over no sample weighting and the common inverse frequency weighting scheme for multi-year LC change forecasts, lowering errors due to quantity while reducing overall allocation error severity. This research study contributes to strategies for addressing the characteristic imbalances of multitemporal LC change datasets for DL modeling endeavors.
Land cover change (LCC) studies are increasingly using deep learning (DL) modeling techniques. Past studies have leveraged temporal or spatiotemporal sequences of historical LC data to forecast changes with DL models. However, these studies do not adequately assess the association between neighborhood size and DL model capability to forecast LCCs, where neighborhood size refers to the spatial extent captured by each data sample. The objectives of this research study were to: (1) evaluate the effect of neighborhood size on the capacity of DL models to forecast LCCs, specifically Temporal Convolutional Networks (TCN) and Convolutional Neural Networks (CNN-TCN), and (2) assess the effect of auxiliary spatial variables on model capacity to forecast LCCs. First, each model type and neighborhood setting configuration was assessed using data derived from multitemporal MODIS LC for the Regional District of Bulkley-Nechako, Canada, comparing subareas exhibiting different amounts of LCCs with trends obtained for the full region. Next, outcomes were compared with three other study regions. The modeling results were evaluated with three-map comparison measures, where the real-world LC for the next timestep, the real-world LC for the previous timestep, and the forecasted LC for the next year were used to calculate correctly transitioned areas. Across all regions explored, it was observed that increasing neighborhood sizes improved the DL model’s capabilities to forecast short-term LCCs. CNN–TCN models forecasted the most correct LCCs for several regions while reducing error due to quantity when provided additional spatial variables. This study contributes to the systematic exploration of neighborhood sizes on selected spatiotemporal DL techniques for geographic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.