Objective: The goal of this study is to evaluate pulmonary function and respiratory center drive in patients with early-stage idiopathic Parkinson's disease (IPD) to facilitate early diagnosis of Parkinson's Disease (PD). Methods: 43 IPD patients (Hoehn and Yahr scale of 1) and 41 matched healthy individuals (e.g., age, sex, height, weight, BMI) were enrolled in this study. Motor status was evaluated using the Movement Disorders Society-Unified PD Rating Scale (MDS-UPDRS). Pulmonary function and respiratory center drive were measured using pulmonary function tests (PFT). All IPD patients were also subjected to a series of neuropsychological tests, including Non-Motor Symptoms Questionnaire (NMSQ), REM Sleep Behavior Disorder Screening Questionnaire (RBDSQ), Beck Depression Inventory (BDI) and Mini Mental State Examination (MMSE). Results: IPD patients and healthy individuals have similar forced vital capacity (FVC), forced expiratory volume in 1s (FEV1), forced expiratory volume in 1s/forced vital capacity (FEV1/FVC), peak expiratory flow (PEF), and carbon monoxide diffusion capacity (DLCOcSB). Reduced respiratory muscle strength, maximal inspiratory pressure (PImax) and maximal expiratory pressure (PEmax) was seen in IPD patients ( p = 0.000 and p = 0.002, respectively). Importantly, the airway occlusion pressure after 0.1 s (P0.1) and respiratory center output were notably higher in IPD patients ( p = 0.000) with a remarkable separation of measured values compared to healthy controls. Conclusion: Our findings suggest that abnormal pulmonary function is present in early stage IPD patients as evidenced by significant changes in PImax, PEmax, and P0.1. Most importantly, P0.1 may have the potential to assist with the identification of IPD in the early stage.
Chronic early life stress (ELS) increases vulnerability to psychopathologies and cognitive deficits in adulthood by disrupting the function of related neural circuits. However, whether this disruption emerges early in the developing brain remains largely unexplored. In the current study, using an established limited-bedding and nesting model of ELS in P2-10 mice, we provide direct evidence that ELS caused early modification of hippocampal glutamatergic synapses in the developing brain. We demonstrated that ELS induced rapid enhancement of AMPA receptor function in hippocampal CA1 pyramidal neurons through a postsynaptic mechanism, and importantly, this was associated with premature unsilencing of NMDA receptor-only silent hippocampal synapses. These results suggest that potentiation of AMPAR function may represent an early mediator of ELS-induced alterations of neural networks in the developing brain and may potentially contribute to subsequent cognitive impairments later in life.
Parkinson's disease (PD) is characterized by the formation of toxic, fibrillar form alpha-synuclein (α-Syn) protein aggregates in dopaminergic neurons. Accumulating evidence has shown a multifactorial interplay between the intracellular calcium elevation and α-Syn dynamics. However, whether membrane depolarization regulates toxic α-Syn aggregates remains unclear. To understand this better, we used an in vitro α-Syn preformed fibrils (PFF) model of PD in human neural cells. We demonstrated functional membrane depolarization in differentiated SH-SY5Y cells induced by two independent treatments: high extracellular K + and the GABA A receptor blocker picrotoxin. We then observed that these treatments significantly alleviated toxic α-Syn aggregation in PFF-treated SH-SY5Y cells. Moreover, clinically relevant direct current stimulation (DCS) also remarkably decreased toxic α-Syn aggregation in PFF-treated SH-SY5Y cells. Taken together, our findings suggest that membrane depolarization plays an important role in alleviating PFF-induced toxic α-Syn aggregates, and that it may represent a novel therapeutic mechanism for PD.
The inferior colliculus (IC) is an auditory midbrain structure involved in processing biologically important temporal features of sounds. The responses of IC neurons to these temporal features reflect an interaction of synaptic inputs and neuronal biophysical properties. One striking biophysical property of IC neurons is the rebound depolarization produced following membrane hyperpolarization. To understand how the rebound depolarization is involved in spike timing, we made whole-cell patch clamp recordings from IC neurons in brain slices of P9-21 rats. We found that the percentage of rebound neurons was developmentally regulated. The precision of the timing of the first spike on the rebound increased when the neuron was repetitively injected with a depolarizing current following membrane hyperpolarization. The average jitter of the first spikes was only 0.5 ms. The selective T-type Ca 2+ channel antagonist, mibefradil, significantly increased the jitter of the first spike of neurons in response to repetitive depolarization following membrane hyperpolarization. Furthermore, the rebound was potentiated by one to two preceding rebounds within a few hundred milliseconds. The first spike generated on the potentiated rebound was more precise than that on the non-potentiated rebound. With the addition of a calcium chelator, BAPTA, into the cell, the rebound potentiation no longer occurred, and the precision of the first spike on the rebound was not improved. These results suggest that the postinhibitory rebound mediated by T-type Ca 2+ channel promotes spike timing precision in IC neurons. The rebound potentiation and precise spikes may be induced by increases in intracellular calcium levels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.