The Nox family NADPH oxidases are reactive oxygen species (ROS)-generating enzymes that are strongly implicated in atherogenesis. However, no studies have examined which Nox isoform(s) are involved. Here we investigated the role of the Nox2-containing NADPH oxidase in atherogenesis in apolipoprotein E-null (ApoE−/−) mice. Wild-type (C57Bl6/J), ApoE−/−, and Nox2−/y/ApoE−/−mice were maintained on a high-fat (21%) diet from 5 wk of age until they were 12 or 19 wk old. Mice were euthanized and their aortas removed for measurement of Nox2 expression (Western blot analysis and immunohistochemistry), ROS production (L012-enhanced chemiluminescence), nitric oxide (NO) bioavailability (contractions to Nω-nitro-l-arginine), and atherosclerotic plaque development along the aorta and in the aortic sinus. Nox2 expression was upregulated in the aortic endothelium of ApoE−/−mice before the appearance of lesions, and this was associated with elevated ROS levels. Within developing plaques, macrophages were also a prominent source of Nox2. The absence of Nox2 in Nox2−/y/ApoE−/−double-knockout mice had minimal effects on plasma lipids or lesion development in the aortic sinus in animals up to 19 wk of age. However, an en face examination of the aorta from the arch to the iliac bifurcation revealed a 50% reduction in lesion area in Nox2−/y/ApoE−/−versus ApoE−/−mice, and this was associated with a marked decrease in aortic ROS production and an increased NO bioavailability. In conclusion, this is the first demonstration of a role for Nox2-NADPH oxidase in vascular ROS production, reduced NO bioavailability, and early lesion development in ApoE−/−mice, highlighting this Nox isoform as a potential target for future therapies for atherosclerosis.
Abstract-Recent studies suggest that the superoxide generating enzyme NADPH oxidase may play a functional role in regulating cerebral vascular tone. We tested whether the activity, function, and expression of NADPH oxidase differs between rat cerebral and systemic arteries. Superoxide production by basilar (BA), middle cerebral (MCA), carotid (CA), renal (RA), and mesenteric (MA) arteries and aorta (AO) was measured using lucigenin-enhanced chemiluminescence. Superoxide production from NADPH oxidase was localized and semiquantified using dihydroethidium. Vascular functional responses were assessed in a myograph or organ bath. Vascular Nox4 protein expression was measured using Western blotting. Superoxide production (basal or in response to NADPH or angiotensin II) in the intracranial arteries, BA, and MCA was 10-to 100-fold greater than in AO, CA, RA, or MA. Similar results were found using either intact vessels or arterial homogenates, and were associated with 10-fold greater expression of Nox4 in the BA versus AO, CA, and MA. Superoxide production was attenuated by the NADPH oxidase inhibitors, diphenyleneiodonium, apocynin, and gp91ds-tat. NADPH and H 2 O 2 were strong relaxing stimuli in the BA, where the H 2 O 2 scavenger catalase, as well as apocynin, attenuated these relaxations and also augmented contractions to angiotensin II. NADPH oxidase activity is markedly higher in intracranial versus systemic arteries, in association with higher Nox4 expression. In cerebral arteries, endogenous H 2 O 2 derived from NADPH oxidase activation appears to cause relaxation and is able to offset angiotensin II-induced constriction. These data are consistent with the concept that NADPH oxidase-derived reactive oxygen species modulate cerebral vascular tone under physiological conditions. (Circ Res. 2005;97:1055-1062.)Key Words: cerebral Ⅲ NADPH oxidase Ⅲ reactive oxygen species Ⅲ angiotensin II Ⅲ hydrogen peroxide E merging evidence indicates that reactive oxygen species (ROS) are important molecules in the control of vascular reactivity. 1 Indeed, the superoxide anion (O 2 Ϫ ) increases vascular tone via the inactivation of endothelium-derived nitric oxide (NO). Recent studies, however, have revealed that the by-product of O 2 Ϫ metabolism, hydrogen peroxide (H 2 O 2 ), is a powerful endogenous vasodilator within the cerebral circulation. 2-5 Thus, ROS may represent important signaling molecules for regulating local cerebral blood flow.Numerous investigators have reported that NADPH oxidases are the primary generators of ROS within the vasculature. 6 -9 These enzymes are membrane-associated and generate O 2 Ϫ by transferring electrons to molecular oxygen via a flavin-containing "Nox" catalytic subunit. 10 In the systemic circulation, NADPH oxidase has been studied extensively, and it is now believed that excessive O 2 Ϫ generation by NADPH oxidase contributes to endothelial dysfunction associated with numerous cardiovascular diseases. 11 Although it has been recently established that NADPH oxidase is expressed and acti...
Recent studies have identified that the novel membrane estrogen receptor, G protein-coupled receptor 30 (GPR30), is present in blood vessels. However, the signaling mechanisms associated with GPR30 in the vasculature remain unclear. We examined whether putative agonists of GPR30 exert vasorelaxant and/or antioxidant effects similar to those reported for estrogen. Using wire myography, we assessed the role of the endothelium in relaxation responses to the GPR30 agonists, G-1 and 5408-0877 (1 nM-10 microM), in U-46619-precontracted common carotid arteries from Sprague-Dawley rats. Furthermore, using lucigenin (5 microM)-enhanced chemiluminescence, we tested the effect of G-1 (10 microM) on superoxide levels. Specific immunofluorescence was also used to confirm GPR30 expression in the arterial wall. We found that G-1 and 5408-0877 induced a concentration-dependent relaxation in carotid arteries from both male and female rats. Interestingly, G-1- and 5408-0877-induced relaxation was abolished by endothelium removal and abrogated in the presence of the nitric oxide synthase inhibitor N(G)-nitro-l-arginine methyl ester (100 microM). In addition, G-1 significantly decreased NADPH (100 microM)-stimulated superoxide production by carotid and intracranial (pooled basilar and middle cerebral) arteries but also attenuated the superoxide signal detected in a cell-free xanthine/xanthine oxidase assay. Furthermore, GPR30 immunoreactivity was observed in endothelial and vascular smooth muscle cells of carotid arteries from both genders. These findings indicate that GPR30 is expressed throughout the arterial wall and that GPR30 agonists elicit endothelial-derived nitric oxide-dependent relaxation of the carotid artery in male and female rats. Additionally, G-1 appears to directly scavenge superoxide anion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.