As the increasing global consumption of concrete drives notable environmental burdens from its production, particularly greenhouse gas (GHG) emissions, interest in mitigation efforts is increasing. Yet current environmental impact quantification tools rely on user decision-making to select data for each concrete constituent, have inconsistent scopes and system boundaries, and often utilize third-party life cycle inventories. These factors limit customization or tracking of data and hinder the ability to draw robust comparisons among concrete mixtures to mitigate its environmental burdens. To address these issues, we introduce an open access environmental impact assessment tool with a cohesive, unified dataset of material, energy, and emission inventories to quantify the environmental impacts of concrete. Models can be customized to be region specific, expanded to varying concrete mixtures, and support data visualization throughout each production stage. We perform a scenario analysis of impacts to produce a representative concrete mixture across the United States, with results ranging from 189 kg CO2-eq/m3 of concrete (California) to 266 kg CO2-eq/m3 of concrete (West Virginia). The largest driver of GHG, nitrogen oxide, sulfur oxide, and volatile organic compound emissions as well as energy demand is cement production, but aggregate production is the largest driver of water consumption and particulate matter smaller than 2.5 microns (PM2.5) emissions.
Population growth and urbanization over the coming decades are anticipated to drive unprecedented demand for infrastructure materials and energy resources. Unfortunately, factors such as the degree of resource consumption, the energy-intensive nature of production, and the chemical-reaction driven emissions make infrastructure materials production industries among the greatest contributors to anthropogenic CO2 emissions. Yet there is an often-overlooked potential environmental benefit to infrastructure materials: most remain in use for decades and their long service lives can facilitate extended storage of carbon. In this perspective, we present an overview of recent technological advancements that can support infrastructure materials acting as a global, distributed carbon sink and discuss areas for further research and development. We present mechanisms to quantify the extent to which the embodied carbon will be removed from the carbon cycle for a long enough period of time to provide carbon sequestration and climate benefit. We conclude that it is possible to unlock the vast potential to engineer a carbon sequestration system that simultaneously meets societal need for expanding infrastructure systems; however, complexities in how these systems are engineered must be systematically and quantitatively incorporated into materials design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.