The air quality monitoring network in Alaska is currently limited to ground-based observations in urban areas and national parks, leaving a large proportion of the state unmonitored. The use of Moderate Resolution Imaging Spectroradiometer MODIS aerosol optical depth (AOD) to estimate ground-level particulate pollution concentrations has been successfully demonstrated around the world and could potentially be used in Alaska. In this work, MODIS AOD measurements at 550 nm were validated against AOD derived from two ground-based Aerosol Robotic Network (AERONET) sunphotometers in Alaska, located at Utqiagvik (previously known as Barrow) and Bonanza Creek, to determine if MODIS AOD from the Terra and Aqua satellites could be used to estimate ground-level particulate pollution concentrations. The MODIS AOD was obtained from MODIS collection 6 using the dark target Land and Ocean algorithms from years 2000 to 2014. MODIS data could only be obtained between the months of April and October; therefore, it was only evaluated for those months. Individual and combined Terra and Aqua MODIS data were considered. The results showed that MODIS collection 6 products at 10-km resolution for Terra and Aqua combined are not valid over land but are valid over the ocean. Note that the individual Terra and Aqua MODIS collection 6 AOD products at 10-km resolution are valid over land individually but not when combined. Results also suggest the MODIS collection 6 AOD products at 3-km resolution are valid over land and ocean and perform better over land than the 10-km product. These findings indicate that MODIS collection 6 AOD products can be used quantitatively in air quality applications in Alaska during the summer months.
The air quality monitoring network in Alaska is currently limited to ground-based observations in urban areas and national parks leaving a large proportion of the state unmonitored. The use of MODIS aerosol optical depth (AOD) to estimate ground-level particulate pollution concentrations has been successfully demonstrated around the world, and could potentially be used in Alaska. In this work, MODIS AOD measurements at 550 nm were validated against AOD derived from AERONET ground-based sunphotometers in Barrow and Bonanza Creek to determine if MODIS AOD from the Terra and Aqua satellites could be used to estimate ground-level particulate pollution concentrations. The MODIS AOD was obtained from MODIS collection 6 using the dark target Land and Ocean algorithms from 2000 to 2014. MODIS data could only be obtained between the months of April and October; therefore, it could only be validated for those months. Individual and combined Terra and Aqua MODIS data were considered. The results showed that MODIS collection 6 products at 10 km resolution for Terra and Aqua combined are not valid over land but are valid over the ocean. On the other hand, the individual Terra and Aqua MODIS collection 6 AOD products at 10 km resolution are valid over land individually but not when combined. Results also suggest the MODIS collection 6 AOD products at 3 km resolution are valid over land and ocean and perform better over land than the 10-km product. These findings indicate that MODIS collection 6 AOD products can be used quantitatively in air quality applications in Alaska during the summer months.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.