The biological regulating factors of physical activity in animals are not well understood. This study investigated differences in central mRNA expression of seven dopamine genes (Drd1, Drd2, Drd3, Drd4, Drd5, TH, and DAT) between high active C57/LJ (n=17) male mice and low active C3H/HeJ (n=20) male mice, and between mice with access to a running wheel and without running wheel access within strain. Mice were housed with running wheels interfaced with a computer for 21 days with distance and duration recorded every 24 hours. On day 21, the striatum and nucleus accumbens were removed during the active period (∼9pm) for dopaminergic analysis. On average, the C57L/J mice with wheels ran significantly farther (10.25±1.37 km/day vs. 0.01±0.09 km/day, p<0.001), longer (329.73±30.52 mins/day vs. 7.81±6.32 mins/day, p<0.001), and faster (31.27±3.13 m/min vs. 11.81±1.08 m/min, p<0.001) than the C3H/HeJ mice with wheels over the 21 day period. No differences in gene expression were found between mice in either strain with wheels and those without wheels suggesting that access to running wheels did not alter dopaminergic expression. In contrast, relative expression for two dopamine genes was significantly lower in the C57L/J mice compared to the C3H/HeJ mice. These results indicate that decreased dopaminergic functioning is correlated with increased activity levels in C57L/J mice and suggests that D1-like receptors as well as Tyrosine Hydroxylase (an indicator of dopamine production), but not D2-like receptors may be associated with the regulation of physical activity in inbred mice.
This study underlines the importance of visual inspection of RNA-seq alignments when investigating alternatively spliced genes. We showed that heat and dehydration stresses increase overall abundance of SR45a mRNA while also increasing production of transcripts encoding the full-length SR45a protein relative to other splice variants.
SummaryHyperfibrinogenemia is a risk predictor in several diseases, including cardiovascular disease. Nevertheless, it remains unknown whether elevated fibrinogen has an etiologic role in or is a reflection of disease pathogenesis, or both. To examine this question, we generated a mouse model of hyperfibrinogenemia. We isolated the mouse fibrinogen locus, containing the three fibrinogen genes, in a single P1 clone. This ~ 100 kb clone was injected into C57Bl/6J zygotes. Three transgenic lines were identified, two with elevated fibrinogen, 1.4- and 1.7-fold relative to normal. We characterized the line with the higher level. Northern blots of total RNA showed transgene expression was liver specific, and the message levels were 2- to 3-fold enhanced. Fibrinogen in transgenic mice was normal in both immunologic and clotting assays. Our data indicate that over-expression of all three fibrinogen genes is necessary to achieve hyperfibrinogenemia. We saw no increase in mortality or morbidity, no gross abnormalities in the organs, and no histologic differences in lung, liver, spleen or kidney, in transgenic mice relative to normal littermates. We conclude that elevated fibrinogen did not cause disease in mice. We anticipate that breeding these mice to other mouse models of disease will demonstrate whether hyper-fibrinogenemia has a role in the initiation or progression of symptomatic disease.
These data demonstrate unique clustered genetic profiles during the daily progression of HSC transdifferentiation and that JAK/STAT signaling may be critical in the early stages of transdifferentiation.
Objective-Elevated fibrinogen is correlated with severe atherosclerosis, as defined by the occurrence of ischemic events, but the mechanistic basis for this correlation remains unknown. To study this relationship, we examined spontaneous and diet-induced atherosclerosis in transgenic mice with hyperfibrinogenemia (elevated fibrinogen). Methods and Results-Normal and transgenic mice were fed either an atherogenic diet or simple breeder chow. We measured plasma fibrinogen levels and identified an age-dependent and diet-dependent increase in fibrinogen. After 8 to 12 months, aortic sections were prepared and stained, and lipid-containing lesions were counted, measured, and assessed for maturity. Lipid-filled deposits appeared spontaneously in a small number of mice on breeder chow; typical fatty streak-type lesions appeared in almost all of the diet-fed animals. Morphometric analysis showed that neither the number nor the size of lesions was influenced by either fibrinogen level or genotype. Conclusions-Our data showed that neither fibrinogen concentration nor genotype had a statistically significant effect on the initiation, initial growth, or early progression of atherosclerotic lesions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.