Intracellular space is at a premium due to the high concentrations of biomolecules and is expected to have a fundamental effect on how large macromolecules move in the cell. Here, we report that crowded solutions promote intramolecular DNA translocation by two human DNA repair glycosylases. The crowding effect increases both the efficiency and average distance of DNA chain translocation by hindering escape of the enzymes to bulk solution. The increased contact time with the DNA chain provides for redundant damage patrolling within individual DNA chains at the expense of slowing the overall rate of damaged base removal from a population of molecules. The significant biological implication is that a crowded cellular environment could influence the mechanism of damage recognition as much as any property of the enzyme or DNA.
Density functional theory calculations, including Poisson-Boltzmann implicit solvent and free energy corrections, are applied to construct a free energy map of formaldehyde and ammonia co-oligomerization in aqueous solution at pH 7. The stepwise route to forming hexamethylenetetramine (HMTA), the one clearly identified major product in a complex mixture, involves a series of addition reactions of formaldehyde and ammonia coupled with dehydration and cyclization reactions at key steps in the pathway. The free energy map also allows us to propose the possible identity of some major peaks observed by mass spectroscopy in the reaction mixture being the result of stable species not along the pathway to HMTA, in particular those formed by intramolecular condensation of hydroxyl groups to form six-membered rings with ether linkages. Our study complements a baseline free energy map previously worked out for the self-oligomerization of formaldehyde in solution at pH 7 using the same computational protocol and published in this journal (J. Phys. Chem. A 2013, 117, 12658).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.