Selected strains of filamentous Phormidium-like cyanobacteria isolated from two Arctic regions (Ellesmere Island, High Canadian Arctic and Svalbard) and from Antarctica (Antarctic peninsula, South Shetland Islands and South Orkney Islands) were studied. The polyphasic approach used included phenotypic observations of morphological features and genotypic analyses (restriction fragment length polymorphism of 16S rRNA gene, internal transcribed space, 16S rRNA gene sequence analysis). Although genotypes generally correspond to observed morphotypes, the genetic analyses revealed a high degree of biodiversity that could not be unveiled using solely morphological evaluations. According to the phylogenetic analysis, the three clones were divided into two major clades, indicating that the phylogenetic distance between Arct-Ph5/Ant-Ph68 and Ant-Ph58 was so large they belonged to different genera. The polyphyletic position of strains of the genus Phormidium was confirmed by this study, attesting the need to entirely revise classification in this taxon in the future.
Two genes encoding proteins related to large subunits of Rubisco were identified in the genome of the planktonic cyanobacterium Microcystis aeruginosa PCC 7806 that forms water blooms worldwide. The rbcL I gene belongs to the form I subfamily typically encountered in cyanobacteria, green algae, and land plants. The second and newly discovered gene is of the form IV subfamily and widespread in the Microcystis genus. In M. aeruginosa PCC 7806 cells, the expression of both rbcL I and rbcL IV is sulfur-dependent. The purified recombinant RbcL IV overexpressed in Escherichia coli cells did not display CO 2 fixation activity but catalyzed enolization of 2,3-diketo-5-methylthiopentyl-1-phosphate, and the rbcL IV gene rescued a Bacillus subtilis MtnW-deficient mutant. Therefore, the Microcystis RbcL IV protein functions both in vitro and in vivo and might be involved in a methionine salvage pathway. Despite variations in the amino acid sequences, RbcL IV shares structural similarities with all members of the Rubisco superfamily. Invariant amino acids within the catalytic site may thus represent the minimal set for enolization, whereas variations, especially located in loop 6, may account for the limitation of the catalytic reaction to enolization. Even at low protein concentrations in vitro, the recombinant RbcL IV assembles spontaneously into dimers, the minimal unit required for Rubisco forms I-III activity. The discovery of the coexistence of RbcL I and RbcL IV in cyanobacteria, the ancestors of chloroplasts, enlightens episodes of the chaotic evolutionary history of the Rubiscos, a protein family of major importance for life on Earth.
Actinorhizal plants are able to establish a symbiotic relationship with Frankia bacteria leading to the formation of root nodules. The symbiotic interaction starts with the exchange of symbiotic signals in the soil between the plant and the bacteria. This molecular dialog involves signaling molecules that are responsible for the specific recognition of the plant host and its endosymbiont. Here we studied two factors potentially involved in signaling between Frankia casuarinae and its actinorhizal host Casuarina glauca: (1) the Root Hair Deforming Factor (CgRHDF) detected using a test based on the characteristic deformation of C. glauca root hairs inoculated with F. casuarinae and (2) a NIN activating factor (CgNINA) which is able to activate the expression of CgNIN, a symbiotic gene expressed during preinfection stages of root hair development. We showed that CgRHDF and CgNINA corresponded to small thermoresistant molecules. Both factors were also hydrophilic and resistant to a chitinase digestion indicating structural differences from rhizobial Nod factors (NFs) or mycorrhizal Myc-LCOs. We also investigated the presence of CgNINA and CgRHDF in 16 Frankia strains representative of Frankia diversity. High levels of root hair deformation (RHD) and activation of ProCgNIN were detected for Casuarina-infective strains from clade Ic and closely related strains from clade Ia unable to nodulate C. glauca. Lower levels were present for distantly related strains belonging to clade III. No CgRHDF or CgNINA could be detected for Frankia coriariae (Clade II) or for uninfective strains from clade IV.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.