I use energy cost share to characterize the role of energy in the economy. Specifically, I use an estimate of monetary expenditures for primary energy on an annualized basis for forty-four countries from 1978 to 2010 for natural gas, coal, petroleum, and electricity. I show that global energy cost share is significantly correlated to a one-year lag in the change in gross domestic product as well as measures of total factor productivity. Given the historical reduction in the relative cost of energy (including food and fodder for animate power) since the start of the Industrial Revolution, combined with a global energy cost share estimate, I conclude that the turn of the 21st Century represents the time period with the cheapest energy in the history of human civilization (to date). This potential historical nadir for energy expenditures around 2000 has important ramifications for strategies to solve future social, economic, and environmental problems such as reducing annual emissions of greenhouse gases (GHGs). Rapidly decreasing annual GHG emissions while internalizing their costs into the economy might feedback to increase energy expenditures to such a degree as to prevent economic growth during that transition.
Abstract:We translate between biophysical and economic metrics that characterize the role of energy in the economy. Specifically, using data from the International Energy Agency, we estimate the energy intensity ratio (EIR), a price-based proxy for a power return ratio (PRR ∼ P out /P invested ). The EIR is a useful metric, because for most countries and energy commodities, it can indicate the biophysical trends of net energy when data are too scarce to perform an original net energy analysis. We calculate EIR for natural gas, coal, petroleum and electricity for forty-four countries from 1978 to 2010. Global EIR values generally rise from 1978 to 1998, decline from 1998 to 2008 and then slightly rebound. These trends indicate one interpretation of the net energy of the world economy. To add perspective to our recent, but short, time series, we perform the same calculations for historical England and United Kingdom energy prices to demonstrate that a given energy price translates to different PRRs (EIR in this case) depending on the structure of the economy and technology. We review the formulation of PRRs and energy return ratios (ERR ∼ E out /E invested ) to indicate why PRRs translate to (the inverse of) energy prices and ERRs translate to (the inverse of) energy costs. We show why for any given value of an ERR or PRR, there is not a single corresponding energy cost or price, and vice versa. These principles in turn provide the basis to perform better modeling of future energy scenarios (e.g., low-carbon transition) by considering the relationship between economic metrics (cost and price) and biophysical metrics (energy and power return ratios) based on energy, material and power flows.
Abstract:We translate between energetic and economic metrics that characterize the role of energy in the economy. Specifically, we estimate monetary expenditures for the primary energy and net external power ratio (NEPR direct ; NEPR, net external power ratio), a power return ratio of annual energy production divided by annual direct energy inputs within the energy industry. We estimate these on an annualized basis for forty-four countries from 1978 to 2010. Expressed as a fraction of gross domestic product (GDP), f e,GDP , the forty-four country aggregate (composing >90% world GDP) worldwide expenditures on energy decreased from a maximum of 10.3% in 1979 to a minimum of 3.0% in 1998 before increasing to a second peak of 8.1% in 2008. While the global f e,GDP fluctuates significantly, global NEPR direct declined from a value of 34 in 1980 to 17 in 1986 before staying in a range between 14 and 16 from 1991 to 2010. In comparing both of these metrics as ratios of power output over power input, one economic ( f −1 e,GDP ) and one biophysical (NEPR direct ), we see that when the former divided by the latter is below unity, the world was in a low-growth or recessionary state.
Abstract:To study the effects of inherent and external alkali and alkaline earth metallic species (AAEMs, i.e., K, Ca and Mg) on the behavior of N-containing species release during rice straw (RS) pyrolysis, different pretreatments were applied in numerous experiments. Results indicate that ammonia (NH 3 ) and hydrogen cyanide (HCN) are the major N-containing species and that the yields of isocyanic acid (HNCO) and nitric oxide (NO) are relatively low. The removal of inhert AAEMs shifts N-containing species release to a high-temperature zone according to volatile release behavior because of the increase in activation energy. The formation selectivity of NH 3 , HNCO, and NO increases by demineralized pretreatment, whereas HCN selectivity decreases. The formation of HNCO is mainly affected by alkaline earth metal. N-containing species release occurs in low temperatures with the addition of external AAEMs. The activation energy of samples impregnated with CaCl 2 and MgCl 2 sharply decreases compared to the original RS. The total yields of N-containing species are reduced significantly in the presence of KCl, CaCl 2 , and MgCl 2 as additives. The inhibition ability of AAEMs follows the sequence MgCl 2 > CaCl 2 > KCl. The inhibition effect of MgCl 2 can be improved by solution immersion compared with solid powder mixing. The clean biomass pyrolysis and gasification technology with low N-containing species content may be developed according to the results.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.