Methods to catalytically
introduce deuterium in synthetically useful
yields ortho to a carboxylic acid directing group
on arenes typically requires D2 or high catalyst loadings,
which makes using these approaches cost prohibitive for large-scale
synthesis (equipment and reagent costs respectively). Herein, we present
a simplified approach using low catalyst loadings of cationic RhIII and D2O as both deuterium source and solvent
and show its application to H/D exchange on various carboxylic acid
substrates.
<div>Methods to catalytically introduce deuterium in synthetically useful yields ortho to a carboxylic acid directing group on arenes typically requires D2 or CD3CO2D, which makes using these approaches cost prohibitive for large scale synthesis (equipment and reagent costs respectively). Herein we present a simplified approach using catalytic RhIII and D2O as deuterium source, and show its application to H/D exchange on various acidic substrates.</div>
<div>Methods to catalytically introduce deuterium in synthetically useful yields ortho to a carboxylic acid directing group on arenes typically requires D2 or CD3CO2D, which makes using these approaches cost prohibitive for large scale synthesis (equipment and reagent costs respectively). Herein we present a simplified approach using catalytic RhIII and D2O as deuterium source, and show its application to H/D exchange on various acidic substrates.</div>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.