BackgroundPhysical activity is a health-enhancing behavior, but few adolescents achieve the recommended levels of moderate-to-vigorous physical activity. Understanding how adolescents use different built environment spaces for physical activity and activity varies by location could help in designing effective interventions to promote moderate-to-vigorous physical activity. The objective of this study was to describe the locations where adolescents engage in physical activity and compare traditional intensity-based measures with continuous activity when describing built environment use patterns among adolescents.MethodsEighty adolescents aged 11–14 years recruited from community health and recreation centers. Adolescents wore accelerometers (Actigraph GT3X) and global positioning system receivers (QStarz BT-Q1000XT) for two separate weeks to record their physical activity levels and locations. Accelerometer data provided a continuous measure of physical activity and intensity-based measures (sedentary time, moderate-to-vigorous physical activity). Physical activity was mapped by land-use classification (home, school, park, playground, streets & sidewalks, other) using geographic information systems and this location-based activity was assessed for both continuous and intensity-based physical activity derived from mixed-effects models which accounted for repeated measures and clustering effects within person, date, school, and town.ResultsMean daily moderate-to-vigorous physical activity was 22 minutes, mean sedentary time was 134 minutes. Moderate-to-vigorous physical activity occurred in bouts lasting up to 15 minutes. Compared to being at home, being at school, on the streets and sidewalks, in parks, and playgrounds were all associated with greater odds of being in moderate-to-vigorous physical activity and achieving higher overall activity levels. Playground use was associated with the highest physical activity level (β = 172 activity counts per minute, SE = 4, p < 0.0001) and greatest odds of being in moderate-to-vigorous physical activity (odds ratio 8.3, 95% confidence interval 4.8-14.2).ConclusionAdolescents were more likely to engage in physical activity, and achieved their highest physical activity levels, when using built environments located outdoors. Novel objective methods for determining physical activity can provide insight into adolescents’ spatial physical activity patterns, which could help guide physical activity interventions. Promoting zoning and health policies that encourage the design and regular use of outdoor spaces may offer another promising opportunity for increasing adolescent physical activity.
BackgroundNumerous definitions of neighborhood exist, yet few studies have considered youth’s perceptions of neighborhood boundaries. This study compared youth-identified neighborhood (YIN) boundaries to census-defined neighborhood (CDN) boundaries, and determined how the amount of time spent and moderate-to-vigorous physical activity (MVPA) levels compared within both boundary types.MethodsAdolescents aged 11–14 years were asked to identify their neighborhood boundaries using a map. Objective location and physical activity data collected using Global Positioning System (GPS) devices and accelerometers were used to calculate the amount of time spent and MVPA within youth-identified and census-defined neighborhood boundaries. Paired bivariate analyses compared mean area (meters squared), percent of total time, daily MVPA (minutes), time density (minutes/m2) and MVPA density (minutes/m2) for both boundary types.ResultsYouth-identified neighborhoods (1,821,705 m2) and census-defined neighborhoods (1,277,181 m2) were not significantly different in area, p = 0.30. However, subjects spent more time in youth-identified neighborhoods (80.3%) than census-defined neighborhoods (58.4%), p < 0.0001, and engaged in more daily MVPA within youth-identified neighborhoods (14.7 minutes) than census-defined neighborhoods (9.5 minutes), p < 0.0001. After adjusting for boundary area, MVPA density (minutes of MVPA per squared meter of area) remained significantly greater for youth-identified neighborhoods (2.4 × 10-4 minutes/m2) than census-defined neighborhoods (1.4 × 10-4 minutes/m2), p = 0.02.ConclusionsAdolescents perceive their neighborhoods to be similar in size to census-defined neighborhoods. However, youth-identified neighborhoods better capture the locations in which adolescents spend time and engage in physical activity. Asking adolescents to identify their neighborhood boundaries is a feasible and valuable method for identifying the spaces that adolescents are exposed to and use to be physically active.
Adolescents do not achieve recommended levels of physical activity. Crime is believed to be a barrier to physical activity among youth, but findings are inconsistent. This study compares the spatial distribution of crime incidences and moderate-to-vigorous physical activity (MVPA) among adolescents in Massachusetts between 2011 and 2012, and examines the correlation between crime and MVPA. Eighty adolescents provided objective physical activity (accelerometer) and location (Global Positioning Systems) data. Crime report data were obtained from the city police department. Data were mapped using geographic information systems, and crime and MVPA densities were calculated using kernel density estimations. Spearman’s correlation tested for associations between crime and MVPA. Overall, 1,694 reported crimes and 16,702 minutes of MVPA were included in analyses. A strong positive correlation was present between crime and adolescent MVPA (ρ=0.72, p<0.0001). Crime remained positively associated with MVPA in locations falling within the lowest quartile (ρ=0.43, p<0.0001) and highest quartile (ρ=0.32, p<0.0001) of crime density. This study found a strong positive association between crime and adolescent MVPA, despite research suggesting the opposite relationship. This counterintuitive finding may be explained by the logic of a common destination: neighborhood spaces which are desirable destinations and promote physical activity may likewise attract crime.
Human exposure to specific environmental factors (e.g. air quality, lighting, and sound) is known to play an important role in the pathogenesis of many chronic diseases (e.g. asthma) and mental health disorders (e.g. anxiety). However, conventional fixed environmental monitoring stations are sparsely located and, despite environmental models, cannot adequately assess individual exposure levels. New forms of low-cost portable monitors have begun to emerge that enable the collection of higher spatial density “crowd sourced” data; however, the first generation of these low-cost environmental monitors have generally not been suitable for clinical environmental health studies due to practical challenges such as calibration, reproducibility, form factor, and battery life. In this paper, we present a wearable environmental monitor that overcomes these challenges and can be used in clinical studies The new device, called “Eco-Mini,” can be used without a smart phone and is capable of locally sampling and recording a variety of environmental parameters (Ozone, Sulfur Dioxide, Volatile Organic Compounds, humidity, temperature, ambient light color balance, and sound level) as well as individual activity (3-axis accelerometer) and location (GPS). In this paper, we also report findings and discuss lessons learned from a feasibility study conducted for one week with pediatric patients as part of an ongoing asthma research study.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.