Using high-pressure liquid chromatography with ultraviolet-visible diode-array detection, we have analyzed polycyclic aromatic hydrocarbons (PAH) in the dichloromethane extracts of soot deposits from coal-burning stoves in several homes of Henan Province, China--including Linxian County, where esophageal cancer rates are some of the highest in the world. Thirty-two individual polycyclic aromatic compounds, ranging in size from three to eight fused aromatic rings, have been unequivocally identified among the soot extract components--including 20 benzenoid PAH, 6 fluoranthene benzologues, 1 cyclopentafused PAH, 1 indene benzologue, 3 oxygenated PAH, and 1 ring-sulfur-containing aromatic. Most of the identified compounds have been observed before among the products of laboratory coal pyrolysis experiments, but two of the components, the six-ring C24H14 napthol[1,2-b]fluoranthene and the eight-ring C30H16 tribenzo[e,ghi,k]perylene, have never before been documented as products of coal in any system. All of the Henan coal soot extracts are remarkably similar qualitatively in that they contain the same set of identified PAH, but absolute levels of individual species vary by up to 5 orders of magnitude, from sample to sample. The bulk of the identified component mass in all of these soot extracts lies in the five- and six-ring PAH--the largest single class being the family of five-ring C20H12 isomers, to which the samples' most abundant components, benzo[b]fluoranthene and benzo[e]pyrene, belong. The five- and six-ring PAH also account for the majority of the samples' known mutagens. The three strong mutagens identified in these soot samples are the C20H12 benzo[a]-pyrene and two C24H14 PAH, dibenzo[a,e]pyrene and naphtho-[2,1-a]pyrene. Seven moderate mutagens are found among the C20H12, C22H12, C22H14, and C24H14 PAH. A major class of mutagens, the cyclopenta-fused PAH, appears to be absent from these samples, but our detection of an oxidation product of the major mutagen cyclopenta[cd]- pyrene--itself mutagenic--suggests that these soot deposits may contain additional mutagenic cyclopentafused PAH oxidation products as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.