New Findings What is the central question of the study?This is the first study to examine the impact of acute hyperglycaemia on endothelial function [flow‐mediated dilatation (FMD)] in premenopausal women across the early and late follicular (EF and LF) phases of the menstrual cycle. What is the main finding and its importance?Flow‐mediated dilatation was impaired 90 min after glucose ingestion, with no significant difference between phases. This indicates that women are susceptible to acute hyperglycaemia‐induced endothelial dysfunction in both the EF and LF phases of the menstrual cycle, despite potentially vasoprotective elevations in estradiol levels during the LF phase. Abstract Acute hyperglycaemia transiently impairs endothelial function in healthy men when assessed via flow‐mediated dilatation (FMD). However, research in female participants is lacking, and the impact of menstrual phase [early follicular (EF) and late follicular (LF)] on vulnerability to acute hyperglycaemia‐induced endothelial dysfunction is unknown. Seventeen healthy, naturally menstruating women [21 ± 1 years old (mean ± SD)] participated in three visits. During two visits (EFGlucose and LFGlucose), brachial artery FMD was assessed before and 60, 90 and 120 min after an oral glucose challenge (75 g glucose). During an additional EF visit, participants ingested 300 ml of water (EFTimeControl). Blood glucose and insulin increased 30 min after glucose ingestion (P < 0.001), with no difference between phases. Flow‐mediated dilatation did not change in EFTimeControl (P = 0.748) but was reduced 90 min after glucose ingestion (Pre, 8.5 ± 2.5%; Post90, 6.6 ± 2.4%, P = 0.001; Cohen's d = 0.82), with no difference between phases (main effect of phase, P = 0.506; phase by time interaction, P = 0.391). To account for individual variability in the time course of the impact of hyperglycaemia, the maximal hyperglycaemia‐induced impairment in FMD was determined in each participant and compared between phases, revealing no significant phase differences (EFGlucose, −3.1 ± 2.8%; LFGlucose, −2.4 ± 2.1%, P = 0.181; d = 0.34). These results indicate that, similar to findings in men, acute hyperglycaemia results in FMD impairment in young women. We did not detect significant protection from acute hyperglycaemia‐induced endothelial dysfunction in the LF ‘high‐oestrogen’ phase in this sample, and further research is needed to examine the potential for a protective effect of oestrogen exposure, including oral contraceptive pills and hormone replacement therapy.
The oxygen-conforming response (OCR) of skeletal muscle refers to a downregulation of muscle force for a given muscle activation when oxygen delivery (O2D) is reduced, which is rapidly reversed when O2D is restored. We tested the hypothesis that the OCR exists in voluntary human exercise and results in compensatory changes in muscle activation to maintain force output, thereby altering perception of effort. In eight men and eight women, electromyography (EMG), oxyhemoglobin (O2Hb) and deoxyhemoglobin (HHb), forearm blood flow (FBF), and task effort awareness (TEA) were measured. Participants completed two nonfatiguing rhythmic handgrip tests consisting of 5-min steady state (SS) followed by two bouts of 2-min brachial artery compression to reduce FBF by ~50% of SS (C1 and C2), separated by 2 min of no compression (NC1) and ending with 2 min of no compression (NC2). When FBF was compromised during C1, EMG/Force (1.58 ± 0.39) increased compared with SS (1.31 ± 0.33, P = 0.001). However, EMG/Force was not restored upon FBF restoration at NC1 (1.48 ± 0.38, P = 0.479), consistent with C1 evoking skeletal muscle fatigue. When FBF was compromised during C2, EMG/Force increased (1.73 ± 0.50) compared with NC1 (1.48 ± 0.38, P = 0.013). EMG/Force returned to NC1 levels during NC2 (1.50 ± 0.39, P = 0.016), consistent with an OCR in C2. TEA (SS 2.2 ± 2.3, C1 3.9 ± 2.5, NC1 3.4 ± 2.7, C2 4.6 ± 2.7, NC2 3.9 ± 2.8) mirrored changes in EMG. It is noteworthy that during the second compromise and then restoration of muscle oxygenation EMG and TEA were rapidly restored to precompromise levels. We interpreted these findings to support the existence of an OCR and its ability to rapidly modify perception of effort during voluntary exercise. NEW & NOTEWORTHY In healthy individuals, when force output is maintained during rhythmic handgrip exercise, muscle activation and perception of effort rapidly increase with compromised muscle oxygen delivery (O2D) and then return to precompromised levels when muscle O2D is restored. These findings suggest that an oxygen-conforming response (OCR) exists and is able to modify perception of effort during voluntary exercise. Therefore, similar to fatigue, an OCR may have implications for exercise tolerance.
Evidence regarding the impact of menstrual phase on endothelial function is conflicting, and studies to date have examined responses only over a single cycle.It is unknown whether the observed inter-individual variability of phase changes in endothelial function reflects stable, inter-individual differences in responses to oestrogen (E 2 ; a primary female sex hormone). The purpose of this study was to examine changes in endothelial function from the early follicular (EF; low-E 2 ) phase to the late follicular (LF; high-E 2 ) phase over two consecutive cycles. Fourteen healthy, regularly menstruating women [22 ± 3 years of age (mean ± SD)] participated in four visits (EF Visit 1 , LF Visit 2 , EF Visit 3 and LF Visit 4 ) over two cycles. Ovulation testing was used to determine the time between the LF visit and ovulation. During each visit, endothelial function [brachial artery flow-mediated dilatation (FMD)], E 2 and progesterone were assessed. At the group level, there was no impact of phase or cycle on FMD (P = 0.48 and P = 0.65, respectively). The phase change in FMD in cycle 1 did not predict the phase change in cycle 2 (r = 0.03, P = 0.92). Using threshold-based classification (2 × typical error threshold), four of 14 participants (29%) exhibited directionally consistent phase changes in FMD across cycles. Oestrogen was not correlated between cycles, and this might have contributed to variability in the FMD response. The intra-individual variability in follicular fluctuation in FMD between menstrual cycles challenges the utility of interpreting individual responses to phase over a single menstrual cycle.
Body weight supported locomotor training uses neuroplasticity principles to improve recovery following a spinal cord injury (SCI). Steady state locomotion using the same body weight support (BWS) percent was compared in 7 males (42.6 ± 4.29 years) with incomplete SCI and matched (gender, age) noninjured controls (42.7 ± 5.4 years) using the Lokomat, Manual Treadmill, and ZeroG. The VO2000, Polar Heart Rate (HR) Monitor, and lower limb electromyography (EMG) electrodes were worn during the 2-minute sessions. Oxygen uptake (VO2) and HR were expressed as percentage of peak values obtained using progressive arm ergometry; VO2 was also expressed relative to resting metabolic equivalents (METS). Filtered EMG signals from tibialis anterior (TA), rectus femoris (RF), biceps femoris (BF), and medial gastrocnemius (MG) were normalized to ZeroG stepping. The Lokomat required 30% of VO2 peak (2METS) compared to ~54% (3METS) for Manual Treadmill and ZeroG sessions. HR was 67% of peak during Lokomat sessions compared to ~83% for Manual Treadmill and ZeroG. Muscle activation was higher in treadmill conditions compared to the ZeroG primarily due to increased BF activity. At the same level of BWS, locomotion using the Manual Treadmill or the ZeroG is more aerobically demanding than the Lokomat. Treadmill modalities encourage greater hip extensor activation compared to overground locomotion.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.