Widespread use of the endocrine disrupting chemical bisphenol A (BPA) in consumer products has resulted in nearly continuous human exposure. In rodents, low-dose exposures have been reported to adversely affect two distinct stages of oogenesis in the developing ovary: the events of prophase at the onset of meiosis in the fetal ovary and the formation of follicles in the perinatal ovary. Because these effects could influence the reproductive longevity and success of the exposed individual, we conducted studies in the rhesus monkey to determine whether BPA induces similar disturbances in the developing primate ovary. The routes and levels of human exposure are unclear; hence, two different exposure protocols were used: single daily oral doses and continuous exposure via subdermal implant. Our analyses of second trimester fetuses exposed at the time of meiotic onset suggest that, as in mice, BPA induces subtle disturbances in the prophase events that set the stage for chromosome segregation at the first meiotic division. Our analyses of thirdtrimester fetuses exposed to single daily oral doses during the time of follicle formation revealed an increase in multioocyte follicles analogous to that reported in rodents. However, two unique phenotypes were evident in continuously exposed animals: persistent unenclosed oocytes in the medullary region and small, nongrowing oocytes in secondary and antral follicles. Because effects on both stages of oogenesis were elicited using doses that yield circulating levels of BPA analogous to those reported in humans, these findings raise concerns for human reproductive health.
The hypothesis that developmental estrogenic exposure induces a constellation of male reproductive tract abnormalities is supported by experimental and human evidence. Experimental data also suggest that some induced effects persist in descendants of exposed males. These multi- and transgenerational effects are assumed to result from epigenetic changes to the germline, but few studies have directly analyzed germ cells. Typically, studies of transgenerational effects have involved exposing one generation and monitoring effects in subsequent unexposed generations. This approach, however, has limited human relevance, since both the number and volume of estrogenic contaminants has increased steadily over time, intensifying rather than reducing or eliminating exposure. Using an outbred CD-1 mouse model, and a sensitive and quantitative marker of germline development, meiotic recombination, we tested the effect of successive generations of exposure on the testis. We targeted the germline during a narrow, perinatal window using oral exposure to the synthetic estrogen, ethinyl estradiol. A complex three generation exposure protocol allowed us to compare the effects of individual, paternal, and grandpaternal (ancestral) exposure. Our data indicate that multiple generations of exposure not only exacerbate germ cell exposure effects, but also increase the incidence and severity of reproductive tract abnormalities. Taken together, our data suggest that male sensitivity to environmental estrogens is increased by successive generations of exposure.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.