Weighted vests have been used primarily as behavioral interventions for children and adolescents with autism. Contemporary research has begun to examine weighted vest effects on movement. Previous research in children with neurotypical development revealed 15% body mass loads modified spatial-temporal gait characteristics; however, a value applicable to children and adolescents with autism has not been established. The purpose of this study was to establish an appropriate mass value by examining spatial-temporal gait parameters in children and adolescents with autism with various loads in a weighted vest. Nine children and adolescents with autism, aged 8–17, walked without a weighted vest, with 5%, 10%, 15%, and 20% body mass while spatial-temporal data were captured. Repeated-measures analysis of variance (α = .05) were conducted among conditions for each variable, with a Holm–Bonferroni method correction. Analysis revealed significant decreases in right step length, but no differences in stride width, left step length, double-limb support time, or stride velocity were observed. Due to insignificant findings, an appropriate mass value could not be determined for weighted vests for children with autism. However, unchanged spatial-temporal gait parameters with increasing loads could be clinically relevant as weighted vest loads of 10% are typically used for behavioral interventions.
Children with autism have displayed imbalances in responding to feedback and feedforward learning information and they have shown difficulty imitating movements. Previous research has focused on motor learning and coordination problems for these children, but little is known about their motoric responses to visual live animation feedback. Thus, we compared motor output responses to live animation biofeedback training in both 15 children with autism and 15 age- and sex-matched typically developing children (age range: 8–17 years). We collected kinematic data via Inertial Measurement Unit devices while participants performed a series of body weight squats at a pre-test, during live animation biofeedback training, and at post-test. Dependent t-tests (α = 0.05), were used to test for statistical significance between pre- and post-test values within groups, and repeated measures analyses of variance (α = 0.05) were used to test for differences among the training blocks, within each group. The Model Statistic technique (α = 0.05) was used to test for pre- and post-test differences on a single-subject level for every participant. Grouped data revealed little to no significant findings in the children with autism, as these participants showed highly individualized responses. However, typically developing children, when grouped, exhibited significant differences in their left hip position ( p = 0.03) and ascent velocity ( p = 0.004). Single-subject analyses showed more individualistic live animation responses of children with autism than typically developing children on every variable of interest except descent velocity. Thus, to teach children with autism new movements in optimal fashion, it is particularly important to understand their individualistic motor learning characteristics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.