Environmental flow programs aim to protect aquatic habitats and species while recognizing competing water demands. Often this is done at the local or watershed level because it is relatively easier to address technical and implementation challenges at these scales. However, a consequence of this approach is that ecological flow criteria are developed for only a few areas as dictated by funding and interest with many streams neglected. Here we discuss the collaborative development of the California Environmental Flows Framework (CEFF) as an example process for developing environmental flow recommendations at a statewide scale. CEFF uses a functional flows approach, which focuses on protecting a broad suite of ecological, geomorphic, and biogeochemical functions instead of specific species or habitats, and can be applied consistently across diverse stream types and spatial scales. CEFF adopts a tiered approach in which statewide models are used to estimate ecological flow needs based on natural functional flow ranges, i.e., metrics that quantify the required magnitude, timing, duration, frequency, and/or rate-of-change of functional flow components under reference hydrologic conditions, for every stream reach in the state. Initial flow needs can then be revised at regional, or watershed, scales based on local constraints, management objectives, and available data and resources. The third tier of CEFF provides a process for considering non-ecological flow needs to produce a final set of environmental flow recommendations that aim to balance of all desired water uses. CEFF was developed via a broad inclusive process that included technical experts across multiple disciplines, representatives from federal and state agencies, and stakeholders and potential end-users from across the state. The resulting framework is therefore not associated with any single agency or regulatory program but can be applied under different contexts, mandates and end-user priorities. The inclusive development of CEFF also allowed us to achieve consensus on the technical foundations and commitment to applying this approach in the future.
Environmental flows are critical to the recovery and conservation of freshwater ecosystems worldwide. However, estimating the flows needed to sustain ecosystem health across large, diverse landscapes is challenging. To advance protections of environmental flows for streams in California, United States, we developed a statewide modeling approach focused on functional components of the natural flow regime. Functional flow components in California streams—fall pulse flows, wet season peak flows and base flows, spring recession flows, and dry season baseflows—support essential physical and ecological processes in riverine ecosystems. These functional flow components can be represented by functional flow metrics (FFMs) and quantified by their magnitude, timing, frequency, duration, and rate-of-change from daily streamflow records. After calculating FFMs at reference-quality streamflow gages in California, we used machine-learning methods to estimate their natural range of values for all stream reaches in the state based on physical watershed characteristics, and climatic factors. We found that the models performed well in predicting FFMs in streams across a diversity of landscape and climate contexts, according to a suite of model performance criteria. Using the predicted FFM values, we established initial estimates of ecological flows that are expected to support critical ecosystem functions and be broadly protective of ecosystem health. Modeling functional flows at large regional scales offers a pathway for increasing the pace and scale of environmental flow protections in California and beyond.
Environmental flows, or the practice of allocating water in river systems for ecological purposes, is a leading strategy for conserving aquatic species and improving river health. However, consideration of surface-groundwater connectivity is seldom addressed in environmental flow development due to a lack of methodologies that account for groundwater contributions to instream flow. Groundwater-influenced streams have been identified as key refugia for native biota under a rapidly changing climate. These ecosystems are anticipated to be more resistant to climate change because groundwater input buffers the adverse effects of low flows and high temperatures, particularly in the dry season. Less understood, however, is the relative contribution of groundwater inputs to streamflow and how these surface-groundwater water interactions should be accounted for in environmental flow assessments and management actions. In order to assess ecological flow needs in groundwater-influenced streams, we applied the California Environmental Flows Framework (CEFF) in two river systems in California, United States. The Little Shasta River and the lower Cosumnes River are representative of many groundwater-influenced streams throughout the semi-arid western United States. Historically, perennial streamflow once sustained diverse native aquatic species in these ecosystems, but water withdrawals for irrigated agriculture has resulted in periodic stream dewatering. We found CEFF was useful in quantifying ecological flow needs for seasonal components of the flow regime that support ecosystem functionality. In particular, CEFF offered flexibility to incorporate information on the seasonal and spatial dimensions of groundwater influences in the development of ecological flow targets. The focus on ecosystem functions in CEFF, and ability to account for groundwater influences on those functions, creates opportunities for integrated surface-groundwater management strategies that support the recovery and protection of streamflows in groundwater-influenced streams.
1. Where freshwater species populations are in decline, conservation management requires rapid, cost-effective approaches to develop recommendations, particularly at broad geographical scales or where species-specific information is lacking. The umbrella species approach, typically applied to terrestrial taxa, is one potentially useful option to inform large-scale freshwater management efforts.2. A quantitative, integrated approach is proposed for selecting suites of umbrella fish species over diverse spatial scales using a combination of species ranges, lifehistory traits, and species vulnerability scores. The approach also uses expert opinion to validate methods and results.3. This approach was applied to native fishes in California, and results for two river basins are explored in the context of instream flow management. These examples illustrate how the results could help address two common instream flow management challenges in California: (i) the lack of information related to speciesspecific flow requirements in basins with many species; and (ii) the need to move beyond a single species approach to flow management. In addition, the results indicate that the protection of native fishes in California would provide cobenefits for other aquatic and riparian taxa. 4.A key benefit of this approach is that the data used to select suites of umbrella species (e.g. species ranges, life-history traits, climate vulnerabilities) are widely available at varying degrees of specificity for most freshwater fishes. Therefore, this flexible approach could be applied in other regions to aid managers in making freshwater conservation decisions, such as for instream flow strategies, in an efficient and cost-effective manner.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.