PURPOSE
We evaluated the validity and inter-rater reliability of encephalographer interpretation of color density spectral array (CDSA) EEG for seizure identification in critically ill children and explored predictors of accurate seizure identification.
METHODS
Conventional EEG tracings from 21 consecutive critically ill children were scored for electrographic seizures. Four two-hour long segments from each patient were converted to 8 channel CDSA displays, yielding 84 images. Eight encephalographers received CDSA training and circled elements thought to represent seizures. Images were reviewed in random order (Group A) or with information regarding seizure presence in the initial 30 minutes and with patient images in order (Group B). Sensitivity, specificity, and inter-rater reliability were calculated. Factors associated with CDSA seizure identification were assessed.
RESULTS
Seizure prevalence was 43% on conventional EEG. Specificity was significantly higher for Group A (92.3% versus 78.2%, p<0.00). Sensitivity was not significantly different between Groups A and B (64.8% versus 75%, p=0.22). Inter-rater reliability was moderate in both groups. Ten percent of images were falsely classified as containing a seizure. Seizure duration ≥2 minutes predicted identification (p<0.001).
CONCLUSIONS
CDSA may be a useful screening tool for seizure identification by encephalographers, but it does not identify all seizures and false positives occur.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.