Background and Purpose: Rate of force development (RFD) is influential, and possibly more influential than other muscular performance parameters, for mobility in older adults. However, only a few studies have investigated this matter, and this has not been examined for the plantar flexors (PFs). The purpose of this study was to examine the contribution of PF RFD and other common tests of muscular performance to Up-and-Go (UG) performance and walking speed (WS) in older adults. Methods: Twenty-six (19 females) healthy, community-dwelling older adults (73.7 ± 4.9 years) were recruited from a senior citizen center for this observational study. Handgrip strength, UG performance, as well as preferred and maximal WS were obtained. Time taken to complete 5-chair rises and the number of chair rises completed in 30 seconds were recorded. Rate of force development of the PFs was obtained during a rapid, bilateral calf raise performed on a force plate. Hierarchical multiple linear regression was used to identify significant predictors, after adjusting for physical activity level and body mass index, of mobility (ie, UG, preferred and maximal WS). Results and Discussion: No muscular performance variables correlated with preferred WS. Rate of force development (adjusted R 2 = 0.356; P = .008) and handgrip strength (adjusted R 2 = 0.293; P = .026) were the only predictors of maximal WS and accounted for a 21.7% and 16.1% change in R 2, respectively, after accounting for physical activity level and body mass index. Rate of force development was the only predictor of UG performance (adjusted R 2 = 0.212; P = .006) and accounted for a 29.2% change in R 2 after adjustment variables were applied. Conclusions: Compared to common assessments of muscular performance, such as handgrip strength and chair rise performance, PF RFD was a greater predictor of mobility in older adults. These findings, in conjunction with recent reports, indicate that the assessment of RFD likely complements strength testing, thereby enabling a more robust assessment of functional decline in older adults.
Introduction: The increasingly popular microbiopsy is an appealing alternative to the more invasive Bergström biopsy given the challenges associated with harvesting skeletal muscle in older populations. Parameters of muscle fiber morphology and composition derived from the microbiopsy have not been compared between young and older adults.Purpose: The purpose of this study was to examine muscle fiber morphology and composition in young (YM) and older (OM) males using the microbiopsy sampling technique. A secondary aim was to determine if specific strength is associated with serum levels of C-terminal agrin fragment [CAF; an indicator of neuromuscular junction (NMJ) degradation].Methods: Thirty healthy, YM (n = 15, age = 20.7 ± 2.2 years) and OM (n = 15, age = 71.6 ± 3.9 years) underwent ultrasound imaging to determine whole-muscle cross-sectional area (CSA) of the vastus lateralis and rectus femoris as well as isometric and isokinetic (60°⋅s–1 and 180°⋅s–1) peak torque testing of the knee extensors. Microbiopsy samples of the vastus lateralis were collected from 13 YM and 11 OM, and immunofluorescence was used to calculate CSA and proportion of type I and type II fibers.Results: Peak torque was lower in OM at all velocities (p ≤ 0.001; d = 1.39–1.86) but only lower at 180°⋅s–1 (p = 0.003; d = 1.23) when normalized to whole-muscle CSA. Whole-muscle CSA was smaller in OM (p = 0.001; d = 1.34), but atrophy was not present at the single fiber level (p > 0.05). Per individual, ∼900 fibers were analyzed, and type I fiber CSA was larger (p = 0.05; d = 0.94) in OM which resulted in a smaller type II/I fiber CSA ratio (p = 0.015; d = 0.95). CAF levels were not sensitive to age (p = 0.159; d = 0.53) nor associated with specific strength or whole-muscle CSA in OM.Conclusion: The microbiopsy appears to be a viable alternative to the Bergström biopsy for histological analyses of skeletal muscle in older adults. NMJ integrity was not influential for age-related differences in specific strength in our healthy, non-sarcopenic older sample.
Methylliberine (Dynamine®; DYM) and theacrine (Teacrine®; TCR) are purine alkaloids purported to have similar neuro-energetic effects as caffeine. There are no published human safety data on DYM, and research on TCR is limited. The purpose of this study was to examine the effect of four weeks of DYM supplementation with and without TCR on cardiovascular function and blood biomarkers. One-hundred twenty-five men and women (mean age 23.0 yrs, height 169.7 cm, body mass 72.1 kg; n = 25/group) were randomly assigned to one of five groups: low-dose DYM (100 mg), high-dose DYM (150 mg), low-dose DYM with TCR (100 mg + 50 mg), high-dose DYM with TCR (150 mg + 25 mg), and placebo. Regardless of group and sex, significant main effects for time were noted for heart rate, systolic blood pressure, and QTc (p < 0.001), high-density lipoproteins (p = 0.002), mean corpuscular hemoglobin (p = 0.018), basophils (p = 0.006), absolute eosinophils (p = 0.010), creatinine (p = 0.004), estimated glomerular filtration rate (p = 0.037), chloride (p = 0.030), carbon dioxide (p = 0.023), bilirubin (p = 0.027), and alanine aminotransferase (p = 0.043), among others. While small changes were found in some cardiovascular and blood biomarkers, no clinically significant changes occurred. This suggests that DYM alone or in combination with TCR consumed at the dosages used in this study does not appear to negatively affect markers of health over four weeks of continuous use.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.