BACKGROUND AND OBJECTIVES:
Children born very preterm (VPT) are at high risk of cognitive impairment that impacts their educational and social opportunities. This study examined the predictive accuracy of assessments at 2, 4, 6, and 9 years in identifying preterm children with cognitive impairment by 12 years.
METHODS:
We prospectively studied a regional cohort of 103 children born VPT (≤32 weeks’ gestation) and 109 children born term from birth to corrected age 12 years. Cognitive functioning was assessed by using age-appropriate, standardized measures: Bayley Scales of Infant Development, Second Edition (age 2); Wechsler Preschool and Primary Scale of Intelligence (ages 4 and 6); and Wechsler Intelligence Scale for Children, Fourth Edition (ages 9 and 12).
RESULTS:
By 12 years, children born VPT were more likely to have severe (odds ratio 3.9; 95% confidence interval 1.1–13.5) or any (odds ratio 3.2; 95% confidence interval 1.8–5.6) cognitive impairment compared with children born term. Adopting a severe cognitive impairment criterion at age 2 under-identified 44% of children born VPT with later severe impairment, whereas a more inclusive earlier criterion identified all severely affected children at 12 years. Prediction improved with age, with any delay at age 6 having the highest sensitivity (85%) and positive predictive value (66%) relative to earlier age assessments. Inclusion of family-social circumstances further improved diagnostic accuracy.
CONCLUSIONS:
Cognitive risk prediction improves with age, with assessments at 6 years offering optimal diagnostic accuracy. Intervention for children with early mild delay may be beneficial, especially for those raised in socially disadvantaged family contexts.
Interest in monitoring long-term neurodevelopmental outcomes of children born moderate-to-late preterm (32-36 weeks gestation) is increasing. Moderate-to-late preterm birth has a negative impact on academic achievement, which may relate to differential development of executive function (EF). Prior studies reporting deficits in EF in preterm children have almost exclusively assessed EF in affectively neutral contexts in high-risk preterm children (< 32 weeks gestation). Disrupted function in motivational or emotionally charged contexts (hot EF) following preterm birth remains uninvestigated, despite evidence that preterm children show differential development of neural circuitry subserving hot EF, including reduced orbitofrontal cortex volume. The present study is the first to examine whether low-risk, healthy children born moderate-to-late preterm exhibit impairments in the development of hot EF. Preterm children at age 4.5 years were less likely to choose larger, delayed rewards across all levels of reward magnitude on a delay discounting task using tangible rewards, but performed more similarly to their full-term peers on a delay aversion task involving abstract rewards and on measures of cool EF. The relationship between gestational age at birth and selection of delayed rewards extended across the entire gestational age range of the sample (32-42 weeks), and remained significant after controlling for intelligence and processing speed. Results imply that there is not a finite cut-off point at which children are spared from potential long-term neurodevelopmental effects of PT birth. Further investigation of reward processing and hot EF in individuals with a history of PT birth is warranted given the susceptibility of prefrontal cortex development to early environmental variations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.