Developing the ability to regulate one’s emotions in accordance with contextual demands (i.e., emotion regulation) is a central developmental task of early childhood. These processes are supported by the engagement of the autonomic nervous system (ANS), a physiological hub of a vast network tasked with dynamically integrating real-time experiential inputs with internal motivational and goal states. To date, much of what is known about the ANS and emotion regulation has been based on measures of respiratory sinus arrhythmia, a cardiac indicator of parasympathetic activity. In the present study, we draw from dynamical systems models to introduce two nonlinear indices of cardiac complexity (fractality and sample entropy) as potential indicators of these broader ANS dynamics. Using data from a stratified sample of preschoolers living in high- (i.e., emergency homeless shelter) and low-risk contexts (N = 115), we show that, in conjunction with respiratory sinus arrhythmia, these nonlinear indices may help to clarify important differences in the behavioral manifestations of emotion regulation. In particular, our results suggest that cardiac complexity may be especially useful for discerning active, effortful emotion regulation from less effortful regulation and dysregulation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.