Cortical function emerges from the intrinsic properties of neocortical neurons and their synaptic connections within and across lamina. Neurodevelopmental disorders affecting migration and lamination of the neocortex result in cognitive delay/disability and epilepsy. Molecular layer heterotopia (MLH), a dysplasia characterized by over-migration of neurons into layer I, are associated with cognitive deficits and neuronal hyperexcitability in humans and mice. The breadth of different inbred mouse strains that exhibit MLH and inheritance patterns of heterotopia remain unknown. A neuroanatomical survey of numerous different inbred mouse strains, 2 first filial generation (F1) hybrids, and one consomic strain (C57BL/6J-Chr 1A/J/NaJ) revealed MLH only in C57BL/6 mice and the consomic strain. Heterotopia were observed in numerous genetically-engineered mouse lines on a congenic C57BL/6 background. These data indicate that heterotopia formation is a weakly penetrant trait requiring homozygosity of one or more C57BL/6 alleles outside of chromosome 1. These data are relevant toward understanding neocortical development and disorders affecting neocortical lamination.
C57BL/6 mice exhibit spontaneous cerebellar malformations consisting of heterotopic neurons and glia in the molecular layer of the posterior vermis, indicative of neuronal migration defect during cerebellar development. Recognizing that many genetically engineered (GE) mouse lines are produced from C57BL/6 ES cells or backcrossed to this strain, we performed histological analyses and found that cerebellar heterotopia were a common feature present in the majority of GE lines on this background. Furthermore, we identify GE mouse lines that will be valuable in the study of cerebellar malformations including diverse driver, reporter, and optogenetic lines. Finally, we discuss the implications that these data have on the use of C57BL/6 mice and GE mice on this background in studies of cerebellar development or as models of disease.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.