The tumor microenvironment is a complex ecosystem comprised of many different cell types, abnormal vasculature and immunosuppressive cytokines. The irregular growth kinetics with which tumors grow leads to increased oxygen consumption and, in turn, hypoxic conditions. Hypoxia has been associated with poor clinical outcome, increased tumor heterogeneity, emergence of resistant clones and evasion of immune detection. Additionally, hypoxia-driven cell death pathways have traditionally been thought of as tolerogenic processes. However, as researchers working in the field of immunotherapy continue to investigate and unveil new types of immunogenic cell death (ICD), it has become clear that, in some instances, hypoxia may actually induce ICD within a tumor. In this review, we will discuss hypoxia-driven immune escape that drives poor prognostic outcomes, the ability of hypoxia to induce ICD and potential therapeutic targets amongst hypoxia pathways.
A high yield synthesis of a novel, small molecule, bisphosphonate-modified trans-cyclooctene (TCO-BP, 2) that binds to regions of active bone metabolism and captures functionalized tetrazines in vivo, via the bioorthogonal inverse electron demand Diels-Alder (IEDDA) cycloaddition, was developed. A Tc-labeled derivative of 2 demonstrated selective localization to shoulder and knee joints in a biodistribution study in normal mice. Compound 2 reacted rapidly with aLu-labeled tetrazine in vitro, and pretargeting experiments in mice, using 2 and the Lu-labeled tetrazine, yielded high activity concentrations in shoulder and knee joints, with minimal uptake in other tissues. Pretargeting experiments with 2 and a novelTc-labeled tetrazine also produced high activity concentrations in the knees and shoulders. Critically, both radiolabeled tetrazines showed negligible uptake in the skeleton and joints when administered in the absence of 2. Compound 2 can be utilized to target functionalized tetrazines to bone and represents a convenient reagent to test novel tetrazines for use with in vivo bioorthogonal pretargeting strategies.
Throughout the history of oncology research, tumor heterogeneity has been a major hurdle for the successful treatment of cancer. As a result of aberrant changes in the tumor microenvironment such as high mutational burden, hypoxic conditions and abnormal vasculature, several malignant subpopulations often exist within a single tumor mass. Therapeutic intervention can also increase selective pressure towards subpopulations with acquired resistance. This phenomenon is often the cause of relapse in previously responsive patients, drastically changing the expected outcome of therapy. In the case of cancer immunotherapy, tumor heterogeneity is a substantial barrier as acquired resistance often takes the form of antigen escape and immunosuppression. In an effort to combat intrinsic resistance mechanisms, therapies are often combined as a multi-pronged approach to target multiple pathways simultaneously. These multi-therapy regimens have long been a mainstay of clinical oncology with chemotherapy cocktails but are more recently being investigated in the emerging landscape of immunotherapy. Furthermore, as high throughput technology becomes more affordable and accessible, researchers continue to deepen their understanding of the factors that influence tumor heterogeneity and shape the TME over the course of treatment regimens. In this review, we will investigate the factors that give rise to tumor heterogeneity and the impact it has on the field of immunotherapy. We will discuss how tumor heterogeneity causes resistance to various treatments and review the strategies currently being employed to overcome this challenging clinical hurdle. Finally, we will outline areas of research that should be prioritized to gain a better understanding of tumor heterogeneity and develop appropriate solutions.
Hydrocyanine dyes are sensitive "turn-on" type optical probes that can detect reactive oxygen species (ROS). We have developed a method to prepare an F-labeled hydrocyanine dye as a multi-modal PET and optical "turn-on" probe. A commercially available near infrared (NIR) dye was modified with a fluorinated prosthetic group that did not alter its ROS sensing properties in the presence of superoxide and hydroxyl radicals. The F-labeled analogue was produced using a single-step terminal fluorination procedure. Positron emission tomography (PET) imaging and quantitative in vivo biodistribution studies indicated this novel probe had remarkably different pharmacokinetics compared to the oxidized cyanine analogue. The chemistry reported enables the use of quantitative and dynamic PET imaging for the in vivo study of hydrocyanine dyes as ROS probes.
Cancer immunotherapies using monoclonal antibodies to block inhibitory checkpoints are showing durable remissions in many types of cancer patients, although the majority of breast cancer patients acquire little benefit. Human melanoma and lung cancer patient studies suggest that immune checkpoint inhibitors are often potent in patients that already have intratumoral T cell infiltrate; although it remains unknown what types of interventions can result in an intratumoral T cell infiltrate in breast cancer. Using non-T cell-inflamed mammary tumors, we assessed what biological processes and downstream inflammation can overcome the barriers to spontaneous T cell priming. Here we show a specific type of combination therapy, consisting of oncolytic virus and chemotherapy, activates necroptosis and limits tumor growth in autochthonous tumors. Combination therapy activates proinflammatory cytokines; intratumoral influx of myeloid cells and cytotoxic T cell infiltrate in locally treated and distant autochthonous tumors to render them susceptible to immune checkpoint inhibitors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.