Prevalence and incidence are two important measures of the impact of a disease. For many diseases, incidence is the most useful measure for response planning. However, the longitudinal studies needed to calculate incidence are resource-intensive, so prevalence estimates are often more readily available. In 1986, Podgor and Leske (Statistics in Medicine, 5:573-578, 1986) developed a model to estimate incidence of a single disease from one survey of age-specific prevalence, even where the presence of the disease increases the mortality rate of patients. Here, we extend their model to the case of progressive diseases, where the incidence of all disease stages is desired. As an example, we consider the case of cataract disease in Africa, where ophthalmologists wish to distinguish between unilateral and bilateral cataract incidence in order to plan the number of cataract surgeries needed to prevent the occurrence of blindness as a result of the disease. Our method has successfully provided cataract incidence estimates on the basis of prevalence data from new Rapid Assessment of Avoidable Blindness surveys in Africa (Lewallen et al., Archives of Ophthalmology, 128(12):1584-1589, 2010). In this paper, we provide a more general form of the model in order to promote its applicability to other diseases.
To estimate the incidence of vision-reducing cataract in sub-Saharan Africa and use these data to calculate cataract surgical rates (CSR) needed to eliminate blindness and visual impairment due to cataract. Methods: Using data from recent population-based, standardized, rapid-assessment surveys, we calculated the agespecific prevalence of cataract (including operated and unoperated eyes) from surveys in 7 "districts" across Africa. This was done at 3 levels of visual acuity. Then we used the age-specific prevalence data to develop a model to estimate age-specific incidence at different visual acuities, taking into account differences in mortality rates between those with cataract compared with those without. The model included development of opacity in the first eye and second eye of people older than 50 years. The incidence data were used to calculate target cataract surgical rates. Results: Incidence and CSR needs varied significantly in different sites and were lower in some than expected. Cataract surgical rates may depend on genetic, environmental, or cultural variations and will vary with population structure, which is not uniform across Africa. Conclusion: Africa should not be viewed as homogeneous in terms of cataract incidence or CSR needed. These CSR calculations should be useful for more appropriate planning of human resources and service delivery on the continent. The methodology can be applied to other population-based data as they become available to determine appropriate CSR targets.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.