Chromosome evolution presents an enigma in the mega-diverse Lepidoptera. Most species exhibit constrained chromosome evolution with nearly identical haploid chromosome counts and chromosome-level gene collinearity among species more than 140 million years divergent. However, a few species possess radically inflated chromosomal counts due to extensive fission and fusion events. To address this enigma of constraint in the face of an exceptional ability to change, we investigated an unprecedented reorganization of the standard lepidopteran chromosome structure in the green-veined white butterfly (Pieris napi). We find that gene content in P. napi has been extensively rearranged in large collinear blocks, which until now have been masked by a haploid chromosome number close to the lepidopteran average. We observe that ancient chromosome ends have been maintained and collinear blocks are enriched for functionally related genes suggesting both a mechanism and a possible role for selection in determining the boundaries of these genome-wide rearrangements.
Tradeoffs affect resource allocation during development and result in fitness consequences that drive the evolution of life history strategies. Yet despite their importance, we know little about the mechanisms underlying life history tradeoffs. Many species of Colias butterflies exhibit an alternative life history strategy (ALHS) where females divert resources from wing pigment synthesis to reproductive and somatic development. Due to this reallocation, a wing color polymorphism is associated with the ALHS: either yellow/orange or white. Here we map the locus associated with this ALHS in Colias crocea to a transposable element insertion located downstream of the Colias homolog of BarH-1, a homeobox transcription factor. Using CRISPR/Cas9 gene editing, antibody staining, and electron microscopy we find white-specific expression of BarH-1 suppresses the formation of pigment granules in wing scales and gives rise to white wing color. Lipid and transcriptome analyses reveal physiological differences associated with the ALHS. Together, these findings characterize a mechanism for a female-limited ALHS.
While the four species of horseshoe crabs share many common reproductive traits with respect to their reproductive systems, they do differ with respect to their mating behavior (monogamy vs. polygynandry). Past research has attributed these differences to a number of factors including: spawning densities, operational sex ratios (OSR's), male condition (or age), environmental and/or genetic factors, or a combination thereof. Mating behaviors in the three Asian horseshoe crab species (Tachypleus gigas, T. tridentatus, and Carcinoscorpius rotundicauda) with low spawning densities and 1:1 operational sex ratios are typically monogamous. In Limulus polyphemus, mating behavior is more variable ranging from monogamy to polygynandry. Here we provide evidence, through a long term behavioral study, that variation in mating behavior is influenced by population density in L. polyphemus. Our study population on two beaches in Connecticut (Long Island Sound) have a spawning density 400 times less than that found in Delaware Bay (0.002 females/m2 vs. 0.8 females/m2) but similar operational sex ratios. Between 90%-95% of all spawning females in CT were paired with only one male, thus exhibiting monogamous behavior. In contrast, between 30 and 60% of spawning females in Delaware Bay have more than one mate and produce clutches of eggs with multiple paternities. Male condition played no role in mating behavior in CT populations. We also observed that on average 18% of the females on the spawning beaches are single. These results suggest that population density is an important condition that determines mating behavior. Also, low population density may lead to decreased mate finding ability and lost opportunities for spawning.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.