The digital relationship between companies and customers happens through online systems where consumers must upload their identification documents pictures to prove their identities. The existence of this large volume of document images encourages the research development to generate image processing systems to automate tasks usually performed by humans, such as Document Type Classification and Document Reading. The lack of identification documents public datasets delays the research development in document image processing because researchers need to attempt partnerships with private or governmental institutions to obtain the data or build their dataset. In this context, this work presents as main contributions a system to support the automatic creation of identification document public datasets and the Brazilian Identity Document Dataset (BID Dataset): the first Brazilian identification documents public dataset. To accomplish the current personal data privacy law, all information in the BID Dataset comes from fake data. This work aims to increase the velocity of research development in identification document image processing, considering that researchers will be able to use the BID Dataset to develop their research freely.
No processo de revisão tarifária de uma agência reguladora a consistência dos dados é de fundamental importância para uma melhor assertividade. Para esta análise, grande parte dos dados de suma relevância não são informados, o que leva a um processo manual dos analistas responsáveis pela revisão. Visando auxiliar o trabalho, foi realizado um estudo de caso com abordagem qualitativa e quantitativa dos dados visando a extração de informações relevantes a partir de uma base disponibilizada com ativos de esgoto e de abastecimento hídrico, algoritmos de classificação baseado em Aprendizado de Máquina foram implementados e validados. Como resultado, um modelo de Random Forest capaz de classificar o tipo de serviço no qual os ativos estão inseridos foi desenvolvido, atingindo uma acurácia de aproximadamente 80%. Deste modo, o presente trabalho viabiliza predizer parte das informações faltantes nas revisões, o que diminuirá o tempo de análise dos agentes, além de reduzir os possíveis erros humanos no processo como um todo.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.