Silicon is the most developed electronic and photonic technological platform and hosts some of the highest-performance spin and photonic qubits developed to date. A hybrid quantum technology harnessing an efficient spin-photon interface in silicon would unlock considerable potential by enabling ultra-long-lived photonic memories, distributed quantum networks, microwave to optical photon converters, and spin-based quantum processors, all linked using integrated silicon photonics. However, the indirect bandgap of silicon makes identification of efficient spin-photon interfaces nontrivial. Here we build upon the recent identification of chalcogen donors as a promising spin-photon interface in silicon. We determined that the spin-dependent optical degree of freedom has a transition dipole moment stronger than previously thought (here 1.96(8) Debye), and the T1 spin lifetime in low magnetic fields is longer than previously thought (> 4.6(1.5) hours). We furthermore determined the optical excited state lifetime (7.7(4) ns), and therefore the natural radiative efficiency (0.80(9) %), and by measuring the phonon sideband, determined the zero-phonon emission fraction (16(1) %). Taken together, these parameters indicate that an integrated quantum optoelectronic platform based upon chalcogen donor qubits in silicon is well within reach of current capabilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.