Immersive virtual reality (iVR) devices are rapidly becoming an important part of our lives and forming a new way for people to interact with computers and each other. The impact and consequences of this innovative technology have not yet been satisfactory explored. This empirical study investigated the cognitive and social aspects of collaboration in a shared, immersive virtual reality. A unique application for implementing a collaborative immersive virtual environment (CIVE) was developed by our interdisciplinary team as a software solution for educational purposes, with two scenarios for learning about hypsography, i.e., explanations of contour line principles. Both scenarios allow switching between a usual 2D contour map and a 3D model of the corresponding terrain to increase the intelligibility and clarity of the educational content. Gamification principles were also applied to both scenarios to augment user engagement during the completion of tasks. A qualitative research approach was adopted to obtain a deep insight into the lived experience of users in a CIVE. It was thus possible to form a deep understanding of very new subject matter. Twelve pairs of participants were observed during their CIVE experience and then interviewed either in a semistructured interview or a focus group. Data from these three research techniques were analyzed using interpretative phenomenological analysis, which is research method for studying individual experience. Four superordinate themes—with detailed descriptions of experiences shared by numerous participants—emerged as results from the analysis; we called these (1) Appreciation for having a collaborator, (2) The Surprising “Fun with Maps”, (3) Communication as a challenge, and (4) Cognition in two realities. The findings of the study indicate the importance of the social dimension during education in a virtual environment and the effectiveness of dynamic and interactive 3D visualization.
This article presents and offers Toggle Toolkit, which is an original collection of Unity scripts designed to control various aspects of interactive 3D experiments. The toolkit enables researchers in different fields to design, conduct and evaluate experiments and include interactive elements in immersive virtual environments. This was achieved by using the internal functionalities of the Unity engine and solutions of our own design. The structure of Toggle Toolkit allows triggers and toggles to be allocated to existing virtual objects and throughout the Unity scene. Once a trigger is executed (with a pre-described action, such as colliding with a virtual object, pressing a key, gazing at an object, etc.), the toggles associated with the trigger are activated and then change the attributes or behaviors of linked objects. All interactive behavior is logged and made available for further statistical analysis. Examples of applications in research are presented and discussed. The Toggle Toolkit's utility lies in its simplicity and modularity. The Toolkit was especially produced for experimenters with few coding skills and high customization requirements in their experiments. The tool is freely available for use in research and can be enhanced with custom scripts. A video tutorial is provided to facilitate use of the tool. The paper aims to not only introduce beginners to experimentation with VR but also offers more experienced researchers who are potentially interested in using and adjusting the features the Toolkit a deeper insight into its structure.
The presented study aspires to utilize the gradually validated immense potential of collaborative immersive virtual environments (CIVEs) in higher education when designing and conducting geography lessons. These particular lessons focused on hypsography. A Research through Design approach and relevant qualitative methodology were used as we engaged two groups of domain experts (experienced geography teachers) to validate both the learning scenarios and the virtual environment we used. The lessons were administered via eDIVE—a novel platform for collaborative learning and teaching in virtual reality of our own design. The teachers underwent a hypsography virtual lesson and were randomly divided into two groups to be compared, which differed in the level of structure given to the lesson (one group received detailed instructions on what task they were to solve, while the other was given a free hand in exploring the environment and activities it afforded). The teachers’ experiences were then summarized in a post-lesson reflection and a subsequent focus group following the tasks. The participants’ expertise allowed insights to be gained into their first-hand experience as students, as well as their expert view of the lesson from an educational point of view. Virtual reality’s implementation into teaching practice was the key topic of the discussion.
The aim of this study was to compare the performance of two bivariate visualizations by measuring response correctness (error rate) and response time, and to identify the differences in cognitive processes involved in map-reading tasks by using eye-tracking methods. The present study is based on our previous research and the hypothesis that the use of different visualization methods may lead to significant cognitive-processing differences. We applied extrinsic and intrinsic visualizations in the study. Participants in the experiment were presented maps which depicted two variables (soil moisture and soil depth) and asked to identify the areas which displayed either a single condition (e.g., “find an area with low soil depth”) or both conditions (e.g., “find an area with high soil moisture and low soil depth”). The research sample was composed of 31 social sciences and humanities university students. The experiment was performed under laboratory conditions, and Hypothesis software was used for data collection. Eye-tracking data were collected for 23 of the participants. An SMI RED-m eye-tracker was used to determine whether either of the two visualization methods was more efficient for solving the given map-reading tasks. Our results showed that with the intrinsic visualization method, the participants spent significantly more time with the map legend. This result suggests that extrinsic and intrinsic visualizations induce different cognitive processes. The intrinsic method was observed to generally require more time and led to higher error rates. In summary, the extrinsic method was found to be more efficient than the intrinsic method, although the difference was less pronounced in the tasks which contained two variables, which proved to be better suited to intrinsic visualization.
This manuscript aims to present a novel behavioral impulsivity test ImGo, which is suitable for impulsivity assessment in the general population. A series of three studies was conducted to validate its psychometric qualities. In Study 1 we describe the principles of ImGo and verify its test-retest and split-half reliability and its convergent validity with an impulsivity self-report scale and Stop Signal test. In Study 2 we re-analyze the convergent validity of ImGo with a Stop Signal test and examine the potential relationship between ImGo and oculomotor inhibition measured by an Anti-Saccades test. In Study 3 we present a robust research with a large sample size and investigate the discriminant validity of ImGo with tests of other related cognitive and executive processes. Backed by our findings from these studies we can safely claim ImGo is a powerful tool with a good level of reliability (both test-retest and split-half) and validity (convergent and discriminant). Its potential lies in its use in diagnostic and research practice of experts from various countries as the test has already been translated to 9 languages so far. The open-source Hypothesis platform, on which the ImGo test is running, provides the option of both individual and group testing in laboratory conditions as well as remotely through an internet browser.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.