We investigated the chimerism pattern within flow-sorted peripheral blood- or bone marrow-derived cell populations after allogeneic bone marrow transplantation (BMT) for the treatment of leukemia in children. This study was performed to define the identity of persistent host-type cells, to identify prognostic variables for the persistence of host- type hematopoiesis, and to determine the prognostic significance of the chimerism pattern on the duration of the leukemia-free interval, the overall survival, and the leukemia-free survival. The patients received either HLA-identical non-T-cell-depleted (n = 46) or HLA nonidentical T- cell-depleted (n = 7) BMT. In the peripheral blood, the children showed either stable mixed chimerism (SMC; ie, persistent host-type hematopoiesis; n = 14), (transient) mixed T-lymphoid chimerism (MTLC; n = 9), or complete chimerism (CC; n = 30). In the bone marrow, only donor-type cells were found in children with either CC (n = 8) or MTLC (n = 2), and a mixture of donor- and recipient-type cells was found in children with SMC (n = 7). The persistence of host-type hematopoiesis (SMC) was significantly related to a lower age of the recipient, the type of conditioning regimen, a lower total body irradiation dose, T- cell depletion of the bone marrow graft, and the use of cyclosporine A for acute graft-versus-host disease prophylaxis. No significant differences were found between patients with (SMC) or without (CC/MTLC) persistent host-type hematopoiesis with respect to the duration of the leukemia-free interval, the overall survival, or the leukemia-free survival. We conclude that ablation of host-type hematopoiesis is not compulsory for long-term leukemia-free survival after allogeneic BMT for various hematologic malignancies.
The amplification of Variable Number of Tandem Repeats (VNTR) by the polymerase chain reaction (PCR) was used to determine the extent of chimaerism in flow sorted lymphoid and myeloid cell populations following allogeneic bone marrow transplantation (BMT). Pre-BMT screening with a set of five VNTR revealed that at least one marker was maximally informative in 95% of donor-recipient pairs. Mixing reconstruction experiments indicated that detection of 1-5% of the minor cell population in a sample of 5 x 10(3) nucleated cells is feasible. Flow sorted post-transplant peripheral blood B- and T-lymphocyte, natural killer and monocyte cell populations were subjected to PCR-VNTR marker analysis. It was shown that this procedure can be used for the early detection of engraftment and the identification of mixed chimaerism in various haematopoietic cell lineages in patients with leukaemia or severe combined immune deficiency, treated with allogeneic BMT.
A high incidence of occult bacteremia was detected by surveillance blood cultures. Further studies are needed to evaluate if a strategy based on surveillance blood cultures can reduce mortality related to bloodstream infections.
We report the outcome of allogeneic bone marrow transplantation (BMT) as treatment for severe combined immunodeficiency disease (SCID) in 31 patients grafted from 1968 until 1992. The patients received a graft from an HLA-identical related (n = 10), an HLA-haplo-identical related (n = 19), or a closely HLA-matched unrelated (n = 2) donor that resulted in the long-term survival of 6 of 10, 9 of 19, and 0 of 2 children, respectively. Major complications included failure of engraftment and early death caused by respiratory failure. The chimerism pattern and immunologic reconstitution were evaluated in 15 children who survived more than 1 year with sustained engraftment. The pattern of engraftment was investigated within flow-sorted peripheral blood (PB) T- and B-lymphoid, natural killer (NK), and myelomonocytic cell populations using the amplification of variable number of tandem repeats by the polymerase chain reaction. The immunologic reconstitution was assessed by various in vitro and in vivo parameters. Although the number of PB T cells and the in vitro T-cell proliferative response was in the lower region of normal in the majority of cases and even subnormal in some, in all cases donor T-cell engraftment and reconstitution of T-cell immunity was observed. Residual host-type T cells (1% to 5%) were detected in eight cases at multiple occasions. All children showed normal serum IgM and IgG subclass levels and produced specific IgG antibodies after vaccination, irrespective of donor B-cell engraftment. However, three HLA haplo-identical graft recipients with host-type B lymphoid and myeloid cells have a persistent selective IgA deficiency. NK cells were either of donor, host, or mixed origin. Donor NK cell engraftment restored defective in vitro NK cell function of the recipient. We conclude that determination of lineage-specific engraftment patterns provides valuable information for the understanding of the immunologic reconstitution after allogeneic BMT for SCID.
We performed polymerase chain reaction-variable number of tandem repeats analysis of flow-sorted peripheral blood T-, B-, natural killer- , and myeloid cell populations (van Leeuwen et al, Br J Haematol 79:218, 1991) in 32 children following allogeneic bone marrow transplantation (BMT) for leukemia to evaluate the relationship between mixed lymphoid chimerism and leukemia relapse. Five patients showed a stable mixed chimerism pattern characterized by the presence of both recipient as well as donor type cells in all cell populations up to 1 year posttransplantation. Five others showed transient mixed chimerism in the T-lymphoid cell lineage. In one patient, host T cells persisted until leukemia relapse. The remaining 21 patients showed a complete chimerism throughout the period of investigation. Twenty-five of these patients were classified according to the presence (n = 10) or absence (n = 15) of recipient type T cells. Statistical analysis did not show significant differences in the distribution of a number of clinical variables between the two groups, nor in the actuarial survival (P = .11) and leukemia-free interval (P = .97). Therefore, these results suggest that persistence of recipient type T lymphoid cells after allogeneic BMT for hematologic malignancies is not correlated with leukemia relapse. In addition, we observed that persistence of host cells within the original leukemia cell lineage and at the correct maturational stage was predictive for leukemia relapse in one case.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.