Protein kinase M ζ (PKMζ) is a constitutively active form of atypical PKC that is exclusively expressed in the brain and implicated in the maintenance of long-term memory1–9. Most studies that support a role for PKMζ in memory maintenance have used pharmacological PKMζ inhibitors such as the myristoylated zeta inhibitory peptide (ZIP) or chelerythrine. Here, we used a genetic approach and targeted exon 9 of the Prkcz gene to generate mice that lack both protein kinase C ζ (PKCζ) and PKMζ (Prkcz−/− mice). Prkcz−/− mice showed normal behavior in a cage environment and in baseline tests of motor function and sensory perception, but displayed reduced anxiety-like behavior. Surprisingly, they did not show deficits in learning or memory in tests of cued fear conditioning, novel object recognition, object location recognition, conditioned place preference (CPP) for cocaine, or motor learning, when compared with wild-type littermates. ZIP injection into the nucleus accumbens (NAc) reduced expression of cocaine CPP in Prkcz−/− mice. In vitro, ZIP and scrambled ZIP inhibited PKMζ, PKCι and PKCζ with similar Ki values. Chelerythrine was a weak inhibitor of PKMζ (Ki = 76 µM). Our findings show that absence of PKMζ does not impair learning and memory in mice, and that ZIP can erase reward memory even when PKMζ is not present.
Cytochrome P450 (CYP) 2D6, an enzyme found in the liver and the brain, is involved in the metabolism of numerous centrally acting drugs (e.g. antidepressants, neuroleptics, opiates), endogenous neurochemicals (e.g. catecholamines) and in the inactivation of neurotoxins (e.g. pesticides, 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)). Although CYP2D6 is essentially an uninducible enzyme in the liver, we show that smokers have higher CYP2D6 in the brain, especially in the basal ganglia. In order to determine whether nicotine, a component of cigarette smoke, could increase brain CYP2D, African Green monkeys were treated chronically with nicotine (0.05 mg/kg for 2 days, then 0.15 mg/kg for 2 days followed by 0.3 mg/kg for 18 days s.c., b.i.d.). Monkeys treated with nicotine showed significant induction of CYP2D in brain when compared to saline-treated animals as detected by western blotting and immunocytochemistry. No changes in liver CYP2D were observed in nicotine-treated monkeys. Induction was observed in various brain regions including those affected in Parkinson's disease (PD) such as substantia nigra (3-fold, p = 0.01), putamen (2.1-fold, p = 0.001) and brainstem (2.4-fold, p = 0.001), with the caudate nucleus approaching significance (1.6-fold, p = 0.07).Immunocytochemistry revealed that the expression of CYP2D in both saline-and nicotine-treated monkeys is cell-specific particularly in the cerebellum, frontal cortex and hippocampus. These results suggest that monkey brain expresses CYP2D, which is induced in specific cells and brain regions upon chronic nicotine treatment. Smokers, or those using nicotine treatment, may have higher levels of brain CYP2D6 that may result in altered localized CNS drug metabolism and inactivation of neurotoxins.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.