Sieve dusting reduces the efficiency of molecular sieve adsorption during ethanol dehydration. As a result, the recoverable yield of pure ethanol is lowered. This study explored the contribution of congeners (acetone, ethyl acetate, and methanol) in molecular sieve dusting by varying the number of pressure cycles and congener concentrations during ethanol dehydration. A general two-factorial design with three levels was used to statistically test these factors. Degree of dusting was evaluated by measuring cumulative decrease in mass and change in crush strength of sieves. The number of pressure cycles and congener concentration had a positive effect on the decrease in mass of Type 3A molecular sieves and a negative effect with crush strength. There was an 11.20 %, 18.56 %, and 34.11 % change in crushing strength from 400, 800, and 1200 mg L-1 acetone concentration for a five-cycle dehydration run, respectively. Greatest decrease in bulk mass was found to be 0.53% (cumulative) and 0.25% (non-cumulative) for acetone and 0.60% (cumulative) and 0.31% (non-cumulative) for congener mixture. The parameters had no significant interaction towards each other; thus, the effect of the number of pressure cycle and congener concentration was additive to sieve dusting.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.