Stabilized un-doped Zinc Telluride (ZnTe) thin films were grown on glass substrates under vacuum using a closed space sublimation (CSS) technique. A dilute copper nitrate solution (0.1/100 mL) was prepared for copper doping, known as an ion exchange process, in the matrix of the ZnTe thin film. The reproducible polycrystalline cubic structure of undoped and the Cu doped ZnTe thin films with preferred orientation (111) was confirmed by X-rays diffraction (XRD) technique. Lattice parameter analyses verified the expansion of unit cell volume after incorporation of Cu species into ZnTe thin films samples. The micrographs of scanning electron microscopy (SEM) were used to measure the variation in crystal sizes of samples. The energy dispersive X-rays were used to validate the elemental composition of undoped and Cu-doped ZnTe thin films. The bandgap energy 2.24 eV of the ZnTe thin film decreased after doping Cu to 2.20 eV and may be due to the introduction of acceptors states near to valance band. Optical studies showed that refractive index was measured from 2.18 to 3.24, whereas thicknesses varied between 220 nm to 320 nm for un-doped and Cu doped ZnTe thin film, respectively, using the Swanepoel model. The oxidation states of Zn2+, Te2+, and Cu+ through high resolution X-ray photoelectron spectroscopy (XPS) analyses was observed. The resistivity of thin films changed from ~107 Ω·cm or undoped ZnTe to ~1 Ω·cm for Cu-doped ZnTe thin film, whereas p-type carrier concentration increased from 4 × 109 cm−2 to 1.4 × 1011 cm−2, respectively. These results predicted that Cu-doped ZnTe thin film can be used as an ideal, efficient, and stable intermediate layer between metallic and absorber back contact for the heterojunction thin film solar cell technology.
In this research work, we investigated a dual switch (DS) active rectifier for the piezoelectric (PE) energy scavenging system. In the proposed DS active rectifier configuration, two extra switches are shunted across the PE transducer which helps the PE transducer’s capacitor in charging and discharging which results in maximum power extraction from the PE transducer. Moreover, in the proposed rectifier configuration comparator controlled active diodes are used instead of conventional/passive diodes to minimize the threshold voltage V T H drop. The proposed DS active rectifier design is fabricated in a 1-poly 6-metal 180-nm standard CMOS process. The simulation and measured results of the proposed DS active rectifier design have the better power conversion efficiency (PCE) of 91.5 %, which definitely helps in extracting more power than the conventional full bridge rectifier (FBR).
Herein, we present the design technique of a resonant rectifier for piezoelectric (PE) energy harvesting. We propose two diode equivalents to reduce the voltage drop in the rectifier operation, a minuscule-drop-diode equivalent (MDDE) and a low-drop-diode equivalent (LDDE). The diode equivalents are embedded in resonant rectifier integrated circuits (ICs), which use symmetric bias-flip to reduce the power used for charging and discharging the internal capacitance of a PE transducer. The self-startup function is supported by synchronously generating control pulses for the bias-flip from the PE transducer. Two resonant rectifier ICs, using both MDDE and LDDE, are fabricated in a 0.18 μm CMOS process and their performances are characterized under external and self-power conditions. Under the external-power condition, the rectifier using LDDE delivers an output power POUT of 564 μW and a rectifier output voltage VRECT of 3.36 V with a power transfer efficiency of 68.1%. Under self-power conditions, the rectifier using MDDE delivers a POUT of 288 μW and a VRECT of 2.4 V with a corresponding efficiency of 78.4%. Using the proposed bias-flip technique, the power extraction capability of the proposed rectifier is 5.9 and 3.0 times higher than that of a conventional full-bridge rectifier.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.