This paper presents the design of a complex-valued differential neural network identifier for uncertain nonlinear systems defined in the complex domain. This design includes the construction of an adaptive algorithm to adjust the parameters included in the identifier. The algorithm is obtained based on a special class of controlled Lyapunov functions. The quality of the identification process is characterized using the practical stability framework. Indeed, the region where the identification error converges is derived by the same Lyapunov method. This zone is defined by the power of uncertainties and perturbations affecting the complex-valued uncertain dynamics. Moreover, this convergence zone is reduced to its lowest possible value using ideas related to the so-called ellipsoid methodology. Two simple but informative numerical examples are developed to show how the identifier proposed in this paper can be used to approximate uncertain nonlinear systems valued in the complex domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.