We study the geography of schistosomiasis across Burkina Faso by means of a spatially explicit model of water-based disease dynamics. The model quantitatively addresses the geographic stratification of disease burden in a novel framework by explicitly accounting for drivers and controls of the disease, including spatial information on the distributions of population and infrastructure, jointly with a general description of human mobility and climatic/ecological drivers. Spatial patterns of disease are analysed by the extraction and the mapping of suitable eigenvectors of the Jacobian matrix subsuming the stability of the disease-free equilibrium. The relevance of the work lies in the novel mapping of disease burden, a byproduct of the parametrization induced by regional upscaling, by model-guided field validations and in the predictive scenarios allowed by exploiting the range of possible parameters and processes. Human mobility is found to be a primary control at regional scales both for pathogen invasion success and the overall distribution of disease burden. The effects of water resources development highlighted by systematic reviews are accounted for by the average distances of human settlements from water bodies that are habitats for the parasite’s intermediate host. Our results confirm the empirical findings about the role of water resources development on disease spread into regions previously nearly disease-free also by inspection of empirical prevalence patterns. We conclude that while the model still needs refinements based on field and epidemiological evidence, the proposed framework provides a powerful tool for large-scale public health planning and schistosomiasis management.
The fate of filter materials and microbial communities during the vermifiltration process were studied for 5 months while treating the concentrated greywater. Four filters were filled with 10 cm gravel of which a layer of medium size gravel (5 cm thickness, aggregate size 20–40 mm) at the bottom and a layer of coarse gravel (5 cm thickness, aggregate size 10–20 mm) at the top, then filled with 20 cm sand (d
60
= 0.2 mm, d
10
= 0.118 mm). Finally, Vermifilter 1 (VF1), control unit and Vermifilter 2 (VF2), were filled with 40 cm fine sawdust (0.05–5 mm) but Vermifilter 3 (VF3), was filled with 40 cm cow dung (0.05–5 mm). Three filters were inoculated with 200 individuals of
Eudrilus eugeniae
except for the control unit which was filled with sawdust. Five sampling ports were installed on the wall of the filters at 10 cm intervals with reference to the surface of the top layer. Three of the filters were supplied with concentrated greywater and VF1 was supplied with drinking water at the hydraulic loading rate of 16 L m
−2
.d
−1
on batch basis, i.e., four times a day at 8:00 a.m., 11:00 a.m., 2:00 p.m. and 5:00 p.m. Weekly, samples from influent and effluent, and monthly, samples of filter materials collected via sampling ports, were collected and analyzed.The removal efficiencies of biological oxygen demand (BOD
5
), total chemical oxygen demand (tCOD), and dissolved chemical oxygen demand (dCOD) of VF2 and VF3 were 5–7% higher than the control unit, but little differences were observed in terms of total suspended solids (TSS). However, the removal efficiencies of nutrients for the control unit was slightly better than VF2 and VF3. The pH and Moisture content (MC) of filter materials increased along the depth, but percentage of volatile solids to total solids (VS/TS) decreased through time due to the high number of microbial communities and earthworms dominating the top layer compared to the bottom. The performance of VF2-sawdust was slightly better than VF3-cow dung to treat concentrated greywater.
The review of studies on arsenic in African waters shows that arsenic can be found in high concentrations in both surface water and groundwater. Arsenic concentrations in African groundwater range between 0.02 and 1760 μg L −1 , whilst the level of arsenic in surface water is ranged up to 10,000 μg L −1 . This high level of arsenic in surface water is related to mining operations, agricultural drains, local sediments, disposal, and incineration of municipal and industrial wastes. However, mining activities remain the main source of surface water pollution. They have thereby a strong impact on the concentration of arsenic in the environment. As for groundwater, high levels of arsenic occur in natural conditions. It is due to the presence of iron oxides; sulphide minerals such as pyrite, arsenopyrite, and chalcopyrite; volcanic rocks; and geothermal waters. Few studies in Africa make the link between human health problems and high levels of arsenic in water. Only two articles were found dealing with arsenic remediation. This shows that arsenic, which constitutes a major public health issue in the world, has less interest in Africa although high concentrations of arsenic have been found in both surface water and groundwater in some African countries. Most of the studies carried out on arsenic issues in Africa are dedicated to the characterization and the quantification of the pollution, but studies on the risk to human health and treatment systems are limited. The arsenic issue in Africa needs special attention in order to avoid the problems experienced in some areas mainly in Asia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.