Background: Zebrafish have been increasingly used for monitoring and assessing the effects of different contaminants in the aquatic environments. In the present study, zebrafish embryos and larvae were used to study the effects of the insecticide diazinon and the herbicide diuron in regard to occurrence of oxidative stress-related cellular responses, multixenobiotic resistance (MXR)-related efflux transporter activity-which represents the first line of defense against xenobiotics in many aquatic organisms-and responses of different molecular and biochemical biomarkers. Results: The recently established non-invasive quantitative plate assay, which uses the fluorescent probes CM-H 2 DCFDA and CellTracker ™ Green CMFDA and measures the fluorescence in whole zebrafish larvae, was applied to assess changes in reactive oxidative species (ROS) and glutathione (GSH) after exposure to the investigated pesticides. The results showed a significant increase of GSH after 1 h exposure of zebrafish larvae to both diazinon and diuron. Regarding the ROS induction, no significant increases in fluorescence could be detected after 2 h exposure to the investigated pesticides. Applying a newly adapted assay for MXR activity, it was determined that diuron caused no change after a 24-h exposure, but caused a significant induction of MXR activity after a 48-h exposure (indicated by a decreased amount of accumulated rhodamine B). On the other hand, diazinon caused an inhibition of MXR activity after both 24 h and 48 h exposure (indicated by an increased amount of accumulated rhodamine B). Regarding the biomarkers, different setups and exposure periods were applied and both molecular (gene expression) and biochemical (enzymatic activities) responses were assessed. Diazinon caused an inhibition of carboxylesterase (CES) and acetylcholinesterase (AChE) activity in zebrafish larvae, diuron inhibited AChE activity in in vitro testing, and both pesticides significantly affected gene expression and activities of some of the cytochrome P450 (CYP) family enzymes. Conclusions: The obtained results show various effects of the investigated pesticides and will help to elucidate how aquatic animals cope with pesticides present in their environment. Additionally, the recently developed fluorescencebased assay and the newly adapted MXR activity assay proved to be useful tools for ecotoxicological risk assessment to further investigate pesticide effects.
Halogenated organic compounds are a particular group of contaminants consisting of a large number of substances, and of great concern due to their persistence in the environment, potential for bioaccumulation and toxicity. Some of these compounds have been classified as persistent organic pollutants (POPs) under The Stockholm Convention and many toxicity assessments have been conducted on them previously. In this work we provide an overview of enzymatic assays used in these studies to establish toxic effects and dose-response relationships. Studies in vivo and in vitro have been considered with a particular emphasis on the impact of halogenated compounds on the activity of relevant enzymes to the humans and the environment. Most information available in the literature focuses on chlorinated compounds, but brominated and fluorinated molecules are also the target of increasing numbers of studies. The enzymes identified can be classified as enzymes: i) the activities of which are affected by the presence of halogenated organic compounds, and ii) those involved in their metabolisation/detoxification resulting in increased activities. In both cases the halogen substituent seems to have an important role in the effects observed. Finally, the use of these enzymes in biosensing tools for monitoring of halogenated compounds is described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.