Intracellular drug delivery using colloidal biomimetic calcium phosphate apatites as nanocarriers is a seducing concept. However, the colloid preparation to an industrial scale requires the use of easily handled raw materials as well as the possibility to tailor the nanoparticles size. In this work, the stabilization of the colloids was investigated with various biocompatible agents. Most interestingly, nanoscale colloids were obtained without the need for toxic and/or hazardous raw materials. Physico-chemical characteristics were investigated by chemical analyses, dynamic light scattering, FTIR/Raman spectroscopies, XRD, and electron microscopy. A particularly promising colloidal system associates biomimetic apatite stabilized with a natural phospholipid moiety (AEP(r), 2-aminoethylphosphoric acid). Complementary data described such colloids as apatite nanocrystals covered with surface Ca(2+)(AEP(r)(-))(2) complexes involving "supernumerary" Ca(2+) ions. The effects of the concentration in AEPr, synthesis temperature, duration of aging in solution, pH, and sonication were followed, showing that it is possible to modulate the mean size of the nanoparticles, typically in the range 30-100 nm. The perfect biocompatibility of such colloids allied to the possibility to prepare them from innocuous compounds shows great promise for intracellular drug delivery.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.