Dyes pollution is a major problem in the water, especially since the main factor is textile factories. The treatments for this problem through nanomaterials have taken a broad scope and many studies. In this study, trinary Novel metals oxide [CuNiFe2O5] nanocomposite is successfully synthesized by Uv-irradiation presses with a maximum intensity wavelength at 365 nm. The nanocomposite was investigated by scanning and transmission electron microscopy measurements (SEM and TEM), and their crystal structure is obtained by the X-ray diffraction technique (XRD). The percentage of elements on the sample was determinate by an Energy-dispersive X-ray spectroscope (EDX) and X-ray mapping. The energy gap is equal to 2.48 eV calculated by photoluminescence spectroscopy (PL). Incorporating CuNiFe2O5 NPs enhanced the uptake of Cibacron brilliant red dye (CBR). A faster CBR adsorption onto CuNiFe2O5 nanocomposite at a contact time of 75 min. The Freundlich (R2 > 0.9684) and pseudo-second-order (R2 > 0.9749) models were most appropriate in the description of the adsorption process. A thermodynamic study was performed to calculate the ΔG, ΔH, and ΔS parameters of 1.415 kJ/mol, 7.63 J/mol K, and 20.8 J/mol. Finally, the novel synthesized nanocomposite is a good adsorbate surface for Cibacron brilliant red dye.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.