Context:Medical diagnosis and clinical decisions rely heavily on the histopathological evaluation of tissue samples, especially in oncology. Historically, classical histopathology has been the gold standard for tissue evaluation and assessment by pathologists. The most widely and commonly used dyes in histopathology are hematoxylin and eosin (H&E) as most malignancies diagnosis is largely based on this protocol. H&E staining has been used for more than a century to identify tissue characteristics and structures morphologies that are needed for tumor diagnosis. In many cases, as tissue is scarce in clinical studies, fluorescence imaging is necessary to allow staining of the same specimen with multiple biomarkers simultaneously. Since fluorescence imaging is a relatively new technology in the pathology landscape, histopathologists are not used to or trained in annotating or interpreting these images.Aims, Settings and Design:To allow pathologists to annotate these images without the need for additional training, we designed an algorithm for the conversion of fluorescence images to brightfield H&E images.Subjects and Methods:In this algorithm, we use fluorescent nuclei staining to reproduce the hematoxylin information and natural tissue autofluorescence to reproduce the eosin information avoiding the necessity to specifically stain the proteins or intracellular structures with an additional fluorescence stain.Statistical Analysis Used:Our method is based on optimizing a transform function from fluorescence to H&E images using least mean square optimization.Results:It results in high quality virtual H&E digital images that can easily and efficiently be analyzed by pathologists. We validated our results with pathologists by making them annotate tumor in real and virtual H&E whole slide images and we obtained promising results.Conclusions:Hence, we provide a solution that enables pathologists to assess tissue and annotate specific structures based on multiplexed fluorescence images.
Histopathological evaluation of tissue samples is a key practice in patient diagnosis and drug development, especially in oncology. Historically, Hematoxylin and Eosin (H&E) has been used by pathologists as a gold standard staining. However, in many cases, various target specific stains, including immunohistochemistry (IHC), are needed in order to highlight specific structures in the tissue. As tissue is scarce and staining procedures are tedious, it would be beneficial to generate images of stained tissue virtually. Virtual staining could also generate in-silico multiplexing of different stains on the same tissue segment. In this paper, we present a sample application that generates FAP-CK virtual IHC images from Ki67-CD8 real IHC images using an unsupervised deep learning approach based on CycleGAN. We also propose a method to deal with tiling artifacts caused by normalization layers and we validate our approach by comparing the results of tissue analysis algorithms for virtual and real images.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.