Fused deposition modelling (FDM), one of the most commonly used additive manufacturing techniques in the industry, involves layer-by-layer deposition of melted material to create a 3D structure. The staircase and beading effect caused by the printing process and temperature variation cause delamination and poor surface finish in FDM-printed parts. This hinders the use of these specimens in various applications, which are then usually resolved using pre-processing and post-processing techniques. Higher surface finish in pre-processing is achieved by increasing the resolution, changing layer thickness and optimizing build orientation. However, this increases the processing time considerably. On the other hand, post-processing techniques involve different processes such as mechanical, chemical, thermal and hybrid methods but can affect the mechanical and structural properties of the printed components. This review paper analyses three different aspects in the area of improving the surface finish of FDM-printed parts. First, this article reviews the state-of-the-art attempts made to improve the surface finish of FDM-printed parts concentrated mainly on different vapour polishing techniques and their respective merits and demerits. Second, it focuses on the changes in mechanical properties before and after polishing. Finally, the paper explores the development in the 3D printing of thermosets and composite materials and their post-processing processes and process parameters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.