Abstract-In this paper, the accuracy of the entropybased thresholding approaches in brain tumor detection framework is investigated. Entropies are information gain methods that have been used for image thresholding with various application and different image modalities. The accuracy of the existing entropies for image thresholding has been studied in general domain (e.g.: natural images) and were not compared thoroughly. Thus, a framework for brain tumor segmentation is proposed with the core process of the image thresholding, in order to evaluate the accuracy of the entropies. Five entropies, namely, Renyi, Maximum, Minimum, Tsallis and Kapur are evaluated. Moreover, the aggregation of entropies was implemented and evaluated. The results show that the maximum entropy is the best for brain tumor detection. Moreover, it was shown that aggregation of entropies output does not enhance the result, however, it works as automatic selection of the best result and produces the results with the highest accuracy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.