Macrocyclic Hedgehog (Hh) pathway inhibitors have been
discovered
with improved potency and maximal inhibition relative to the previously
reported macrocycle robotnikinin. Analogues were prepared using a
modular and efficient build-couple-pair (BCP) approach, with a ring-closing
metathesis step to form the macrocyclic ring. Varying the position
of the macrocycle nitrogen and oxygen atoms provided inhibitors with
improved activity in cellular assays; the most potent analogue was 29 (BRD-6851), with an IC50 of 0.4 μM against
C3H10T1/2 cells undergoing Hh-induced activation, as measured by Gli1 transcription and alkaline phosphatase induction. Studies
with Patched knockout (Ptch–/–) cells and competition studies with the Smoothened (Smo) agonists
SAG and purmorphamine demonstrate that in contrast to robotnikinin,
select analogues are Smo antagonists.
SummaryThe National Institutes of Health Molecular Libraries and Probe Production Centers Network (NIH-MLPCN) screened >300,000 compounds to evaluate their ability to restore fluconazole susceptibility in resistant Candida albicans isolates. Additional counter screens were incorporated to remove substances inherently toxic to either mammalian or fungal cells. A substituted indazole possessing the desired bioactivity profile was selected for further development, and initial investigation of structure–activity relationships led to the discovery of ML212.
As ENT inhibitors including dilazep have shown efficacy improving oHSV1 targeted oncolytic cancer therapy, a series of dilazep analogues was synthesized and biologically evaluated to examine both ENT1 and ENT2 inhibition. The central diamine core, alkyl chains, ester linkage and substituents on the phenyl ring were all varied. Compounds were screened against ENT1 and ENT2 using a radio-ligand cell-based assay. Dilazep and analogues with minor structural changes are potent and selective ENT1 inhibitors. No selective ENT2 inhibitors were found, although some analogues were more potent against ENT2 than the parent dilazep.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.