We show that a non-Sasakian contact metric manifold with η-parallel torsion tensor and sectional curvatures of plane sections containing the Reeb vector field different from 1 at some point, is a (k, µ)-contact manifold. In particular for the standard contact metric structure of the tangent sphere bundle the torsion tensor is η-parallel if and only if M is of constant curvature, in which case its associated pseudo-Hermitian structure is CRintegrable. Next we show that if the metric of a non-Sasakian (k, µ)-contact manifold (M, g) is a gradient Ricci soliton, then (M, g) is locally flat in dimension 3, and locally isometric to E n+1 × S n (4) in higher dimensions.
We prove that if a Sasakian metric is a ∗-Ricci Soliton, then it is either positive Sasakian, or null-Sasakian. Next, we prove that if a complete Sasakian metric is an almost gradient ∗-Ricci Soliton, then it is positive-Sasakian and isometric to a unit sphere [Formula: see text]. Finally, we classify nontrivial ∗-Ricci Solitons on non-Sasakian [Formula: see text]-contact manifolds.
Abstract:We prove the following results: (i) A Sasakian metric as a nontrivial Ricci soliton is null η-Einstein, and expanding. Such a characterization permits to identify the Sasakian metric on the Heisenberg group H 2n+1 as an explicit example of (non-trivial) Ricci soliton of such type. (ii) If an η-Einstein contact metric manifold M has a vector field V leaving the structure tensor and the scalar curvature invariant, then either V is an infinitesimal automorphism, or M is D-homothetically fixed K-contact.MSC : 53C15, 53C25, 53D10
In this paper we study Einstein-Weyl structures in the framework of contact metric manifolds. First, we prove that a complete K -contact manifold admitting both the Einstein-Weyl structures W ± = (g, ±ω) is Sasakian. Next, we show that a compact contact metric manifold admitting an Einstein-Weyl structure is either K -contact or the dual field of ω is orthogonal to the Reeb vector field, provided the Reeb vector field is an eigenvector of the Ricci operator. We also prove that a contact metric manifold admitting both the EinsteinWeyl structures and satisfying Qϕ = ϕ Q is either K -contact or Einstein. Finally, a couple of results on contact metric manifold admitting an Einstein-Weyl structure W = (g, f η) are presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.