Tomato (Solanum lycopersicum) is a major crop plant and a model system for fruit development. Solanum is one of the largest angiosperm genera(1) and includes annual and perennial plants from diverse habitats. Here we present a high-quality genome sequence of domesticated tomato, a draft sequence of its closest wild relative, Solanum pimpinellifolium(2), and compare them to each other and to the potato genome (Solanum tuberosum). The two tomato genomes show only 0.6% nucleotide divergence and signs of recent admixture, but show more than 8% divergence from potato, with nine large and several smaller inversions. In contrast to Arabidopsis, but similar to soybean, tomato and potato small RNAs map predominantly to gene-rich chromosomal regions, including gene promoters. The Solanum lineage has experienced two consecutive genome triplications: one that is ancient and shared with rosids, and a more recent one. These triplications set the stage for the neofunctionalization of genes controlling fruit characteristics, such as colour and fleshiness
An RFLP linkage map of the potato is presented which comprises 304 loci derived from 230 DNA probes and one morphological marker (tuber skin color). The self-incompatibility locus of potato was mapped to chromosome I, which is homoeologous to tomato chromosome I. By mapping chromosome-specific tomato RFLP markers in potato and, vice versa, potato markers in tomato, the different potato and tomato RFLP maps were aligned to each other and the similarity of the potato and tomato genome was confirmed. The numbers given to the 12 potato chromosomes are now in accordance with the established tomato nomenclature. Comparisons between potato RFLP maps derived from different genetic backgrounds revealed conservation of marker order but differences in chromosome and total map length. In particular, significant reduction of map length was observed in interspecific compared to intraspecific crosses. The distribution of regions with distorted segregation ratios in the genome was analyzed for four potato parents. The most prominent distortion of recombination was found to be caused by the self-incompatibility locus.
Consumption of tomato fruits, like those of many other plant species that are part of the human diet, is considered to be associated with several positive effects on health. Indeed, tomato fruits are an important source of bioactive compounds with known beneficial effects including vitamins, antioxidants, and anticancer substances. In particular, antioxidant metabolites are a group of vitamins, carotenoids, phenolic compounds, and phenolic acid that can provide effective protection by neutralizing free radicals, which are unstable molecules linked to the development of a number of degenerative diseases and conditions. In this review, we will summarize the recent progress on tomatoes nutritional importance and mechanisms of action of different phytochemicals against inflammation processes and prevention of chronic noncommunicable diseases (e.g., obesity, diabetes, coronary heart disease, and hypertension). In addition, we will summarize the significant progress recently made to improve the nutritional quality of tomato fruits through metabolic engineering and/or breeding.
BackgroundGenome Wide Association Studies (GWAS) have been recently used to dissect complex quantitative traits and identify candidate genes affecting phenotype variation of polygenic traits. In order to map loci controlling variation in tomato marketable and nutritional fruit traits, we used a collection of 96 cultivated genotypes, including Italian, Latin American, and other worldwide-spread landraces and varieties. Phenotyping was carried out by measuring ten quality traits and metabolites in red ripe fruits. In parallel, genotyping was carried out by using the Illumina Infinium SolCAP array, which allows data to be collected from 7,720 single nucleotide polymorphism (SNP) markers.ResultsThe Mixed Linear Model used to detect associations between markers and traits allowed population structure and relatedness to be evidenced within our collection, which have been taken into consideration for association analysis. GWAS identified 20 SNPs that were significantly associated with seven out of ten traits considered. In particular, our analysis revealed two markers associated with phenolic compounds, three with ascorbic acid, β-carotene and trans-lycopene, six with titratable acidity, and only one with pH and fresh weight. Co-localization of a group of associated loci with candidate genes/QTLs previously reported in other studies validated the approach. Moreover, 19 putative genes in linkage disequilibrium with markers were found. These genes might be involved in the biosynthetic pathways of the traits analyzed or might be implied in their transcriptional regulation. Finally, favourable allelic combinations between associated loci were identified that could be pyramided to obtain new improved genotypes.ConclusionsOur results led to the identification of promising candidate loci controlling fruit quality that, in the future, might be transferred into tomato genotypes by Marker Assisted Selection or genetic engineering, and highlighted that intraspecific variability might be still exploited for enhancing tomato fruit quality.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0337-9) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.