Using the isospin-dependent quantum molecular dynamics model we study the isospin effects on the disappearance of flow for the reactions of 58 N i+ 58 N i and 58 F e+ 58 F e as a function of impact parameter. We found good agreement between our calculations and experimentally measured energy of vanishing flow at all colliding geometries. Our calculations reproduce the experimental data within 5%(10%) at central (peripheral) geometries.
A complete theoretical study is presented for the disappearance of flow, for the first time, by analyzing 15 reactions with masses between 47 and 476 units. We demonstrate that the effect of nucleon-nucleon cross-section reduces to insignificant level for heavier colliding nuclei in agreement with previous studies. A stiff equation of state with nucleon-nucleon cross-sections σ=35-40 mb is able to explain all the measured balance energies within few percent. A power law (∝A τ ) is also given for the mass dependence of the disappearance of flow which is in excellent agreement with experimental data.PACS numbers:
We study the mass dependence of various quantities (like the average and maximum density, collision rate, participant-spectator matter, temperature as well as time zones for higher density) by simulating the reactions at the energy of vanishing flow. This study is carried out within the framework of Quantum Molecular Dynamics model. Our findings clearly indicate an existence of a power law in all the above quantities calculated at the balance energy. The only significant mass dependence was obtained for the temperature reached in the central sphere. All other quantities are rather either insensitive or depend weakly on the system size at balance energy. The time zone for higher density as well as the time of maximal density and collision rate follow a power law inverse to the energy of vanishing flow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.