Biomass-derived carbons are emerging materials with a wide range of catalytic properties, such as large surface area and porosity, which make them ideal candidates to be used as heterogeneous catalysts and catalytic supports. Their unique physical and chemical properties, such as their tunable surface, chemical inertness, and hydrophobicity, along with being environmentally friendly and cost effective, give them an edge over other catalysts. The biomass-derived carbon materials are compatible with a wide range of reactions including organic transformations, electrocatalytic reactions, and photocatalytic reactions. This review discusses the uses of materials produced from biomass in the realm of heterogeneous catalysis, highlighting the different types of carbon materials derived from biomass that are potential catalysts, and the importance and unique properties of heterogeneous catalysts with different preparation methods are summarized. Furthermore, this review article presents the relevant work carried out in recent years where unique biomass-derived materials are used as heterogeneous catalysts and their contribution to the field of catalysis. The challenges and potential prospects of heterogeneous catalysis are also discussed.
In this present work, we demonstrate an efficient electrochemical sensor for the detection of hydrogen peroxide (H2O2) using a glassy carbon electrode (GCE) modified with a ternary nanocomposite of tin oxide QDs/GO/PPy (SGP2). An in situ chemical oxidative polymerization method was used to create the SGP2 nanocomposite. FTIR, XRD, HR TEM, CV, DPV, and impedance analysis were used to characterize the nanocomposite. The SGP2 nanocomposite modified GCE can be used to create an effective H2O2 electrochemical sensor with high sensitivity and a low detection limit (LOD). With SGP2 modified GCE, the electrochemical detection test for H2O2 was carried out using cyclic voltammetry (CV) and amperometric methods. The SGP2 modified GCE shows improved sensing capabilities, resulting in considerable sensitivity of 11.69 µA mM cm−2 and a very low limit of detection (LOD) of 0.758 µM for a broad linear range of H2O2 concentration from 0.1 mM to 0.8 mM with a correlation coefficient R2 = 0.9886. Additionally, the performance of the SGP2-modified GCE electrode is on par with or nonetheless superior to that of the other functional materials that have been reported for H2O2. As a result, our findings suggest that combining conductive polymer with metal oxide may be a useful method for producing sophisticated and affordable electrochemical sensors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.