Candida infections are most prominent among fungal infections majorly target immunocompromised and hospitalized patients and cause significant morbidity and mortality. Candida albicans is the notorious and most prevalent among all pathogenic Candida strains. Its emerging resistance toward available antifungal agents making it hard to tackle and emerging as global healthcare emergency. Simultaneously, 1,2,3-triazole nucleus is a privileged scaffold that is gaining importance in antifungal drug development due to being a prominent bioactive linker and isostere of triazole based antifungal class core 1,2,4-triazole. Numerous reports have been updated in scientific literature in last few decades related to utilization of 1,2,3-triazole nucleus in antifungal drug development against Candida albicans. Present review will shed light on various preclinical studies focused on development of 1,2,3-triazole derivatives targeting Candida albicans along with brief highlight on clinical trials and newly approved drugs. Structure-activity relationship has been precisely discussed for each architect along with future perspective that will help medicinal chemists in design and development of potent antifungal agents for tackling infections derived from Candida albicans.
Fungal infections are posing serious threat to healthcare system due to emerging resistance among available antifungal agents. Among available antifungal agents in clinical practice, azoles (diazole, 1,2,4‐triazole and tetrazole) remained most effective and widely prescribed antifungal agents. Now their associated side effects and emerging resistance pattern raised a need of new and potent antifungal agents. Lanosterol 14α‐demethylase (CYP51) is responsible for the oxidative removal of 14α‐methyl group of sterol precursors lanosterol and 24(28)‐methylene‐24,25‐dihydrolanosterol in ergosterol biosynthesis hence an essential component of fungal life cycle and prominent target for antifungal drug development. This review will shed light on various azole‐ as well as non‐azoles‐based derivatives as potential antifungal agents that target fungal CYP51. Review will provide deep insight about structure activity relationship, pharmacological outcomes, and interactions of derivatives with CYP51 at molecular level. It will help medicinal chemists working on antifungal development in designing more rational, potent, and safer antifungal agents by targeting fungal CYP51 for tackling emerging antifungal drug resistance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.