The COVID-19 pandemic has profoundly affected almost all facets of peoples’ lives, various economic areas and regions of the world. In such a situation implementation of a vaccination can be viewed as essential but its success will be dependent on availability and transparency in the distribution process that will be shared among the stakeholders. Various distributed ledgers (DLTs) such as blockchain provide an open, public, immutable system that has numerous applications due the mentioned abilities. In this paper the authors have proposed a solution based on blockchain to increase the security and transparency in the tracing of COVID-19 vaccination vials. Smart contracts have been developed to monitor the supply, distribution of vaccination vials. The proposed solution will help to generate a tamper-proof and secure environment for the distribution of COVID-19 vaccination vials. Proof of delivery is used as a consensus mechanism for the proposed solution. A feedback feature is also implemented in order to track the vials lot in case of any side effect cause to the patient. The authors have implemented and tested the proposed solution using Ethereum test network, RinkeyBy, MetaMask, one clicks DApp. The proposed solution shows promising results in terms of throughput and scalability.
The study focuses on the artificial intelligence empowered road vehicle-train collision risk prediction assessment, which may lead to the development of a road vehicle-train collision avoidance system for unmanned railway level crossings. The study delimits itself around the road vehicle-train collisions at unmanned railway level crossings on single line railroad sections. The first objective of the study revolves around the railroad collision risk evaluation by the development of road vehicle-train collision frequency and severity prediction model using Poisson and Gamma-log regression techniques respectively. Another study objective is the collision modification factor implementation on predicted risk factors, to reduce the road vehicle-train collision risk at the crossings. The collision risk has been predicted to be 3.52 times higher and 77% lower in one direction while in other directions it is 2.95 times higher and 80% lower than average risk at all unmanned railway level crossings. With collision modification factor application on higher risk contributing factors i.e. 'crossing angle' and 'train visibility, it predicts to reduce the road vehicle-train collision risk to 85% approximately.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.