Underwater wireless sensor networks (UWSNs) is emerging as an advance terminology for monitoring and controlling the underwater aquatic life. This technology determines the undiscovered resources present in the water through computational intelligence (CI) techniques. CI here pertains to the capability of a system to acquire a specific task from data or experimental surveillance below the water. In today's time data is considered as the identity for everything that exists in nature, whether that data is related to human beings, machines or any type of device like internet of underwater things (IoUT). The collected data should be correct, complete and fulfill the requirements of a particular task to be done. Underwater data collection is very tough because of sensors mobility due to water drift 3 meters/sec, crest and trough. A lot of packet drop also exists due to underwater conditions that hurdles the data collection process. Various techniques already exists for efficient collection of data below the water but these are not properly classified. This manuscript has summarized the concept of data collection in UWSN along with its classification based on routing. Also, a short discussion about existence of CORONA below the water along with water purification is carried out. Furthermore, some data routing approaches are also analyzed on the basis of quality of service parameters and the current challenges to be tackled during data collection are also discussed. INDEX TERMS Acoustic sensor network, coronavirus (COVID-19), computational intelligence, routing, underwater sensor network DIVYA ANAND received the Ph.D. degree in computer science and engineering and Masters of Technology in information security from the Lovely Professional University. She has expertise in Teaching, Entrepreneurship and Research and Development. She is currently an Assistant Professor with the Lovely Professional University. She has published over 20 conferences and journal articles. Her research interests include networks security, bioinformatics, machine learning, gene identification, big data analytics and computational models.
The world is experiencing an unprecedented crisis due to the coronavirus disease (COVID-19) outbreak that has affected nearly 216 countries and territories across the globe. Since the pandemic outbreak, there is a growing interest in computational model-based diagnostic technologies to support the screening and diagnosis of COVID-19 cases using medical imaging such as chest X-ray (CXR) scans. It is discovered in initial studies that patients infected with COVID-19 show abnormalities in their CXR images that represent specific radiological patterns. Still, detection of these patterns is challenging and time-consuming even for skilled radiologists. In this study, we propose a novel convolutional neural network- (CNN-) based deep learning fusion framework using the transfer learning concept where parameters (weights) from different models are combined into a single model to extract features from images which are then fed to a custom classifier for prediction. We use gradient-weighted class activation mapping to visualize the infected areas of CXR images. Furthermore, we provide feature representation through visualization to gain a deeper understanding of the class separability of the studied models with respect to COVID-19 detection. Cross-validation studies are used to assess the performance of the proposed models using open-access datasets containing healthy and both COVID-19 and other pneumonia infected CXR images. Evaluation results show that the best performing fusion model can attain a classification accuracy of 95.49% with a high level of sensitivity and specificity.
The COVID-19 pandemic has wreaked havoc in the daily life of human beings and devastated many economies worldwide, claiming millions of lives so far. Studies on COVID-19 have shown that older adults and people with a history of various medical issues, specifically prior cases of pneumonia, are at a higher risk of developing severe complications from COVID-19. As pneumonia is a common type of infection that spreads in the lungs, doctors usually perform chest X-ray to identify the infected regions of the lungs. In this study, machine learning tools such as LabelBinarizer are used to perform one-hot encoding on the labeled chest X-ray images and transform them into categorical form using Python’s to_categorical tool. Subsequently, various deep learning features such as convolutional neural network (CNN), VGG16, AveragePooling2D, dropout, flatten, dense, and input are used to build a detection model. Adam is used as an optimizer, which can be further applied to predict pneumonia in COVID-19 patients. The model predicted pneumonia with an average accuracy of 91.69%, sensitivity of 95.92%, and specificity of 100%. The model also efficiently reduces training loss and increases accuracy.
In real world, the automatic detection of liver disease is a challenging problem among medical practitioners. The intent of this work is to propose an intelligent hybrid approach for the diagnosis of hepatitis disease. The diagnosis is performed with the combination of k-means clustering and improved ensemble-driven learning. To avoid clinical experience and to reduce the evaluation time, ensemble learning is deployed, which constructs a set of hypotheses by using multiple learners to solve a liver disease problem. The performance analysis of the proposed integrated hybrid system is compared in terms of accuracy, true positive rate, precision, f-measure, kappa statistic, mean absolute error, and root mean squared error. Simulation results showed that the enhanced k-means clustering and improved ensemble learning with enhanced adaptive boosting, bagged decision tree, and J48 decision tree-based intelligent hybrid approach achieved better prediction outcomes than other existing individual and integrated methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.