The identification of influential nodes in complex networks has been widely used to suppress rumor dissemination and control the spread of epidemics and diseases. However, achieving high accuracy and comprehensiveness in node influence ranking is time-consuming, and there are issues in using different measures on the same subject. The identification of influential nodes is very important for the maintenance of the entire network because they determine the stability and integrity of the entire network, which has strong practical application value in real life. Accordingly, a method based on local neighbor contribution (LNC) is proposed. LNC combines the influence of the nodes themselves with the contribution of the nearest and the next nearest neighbor nodes, thus further quantifying node influence in complex networks. LNC is applicable to networks of various scales, and its time complexity is considerably low. We evaluate the performance of LNC through extensive simulation experiments on seven real-world networks and two synthetic networks. We employ the SIR model to examine the spreading efficiency of each node and compare LNC with degree centrality, betweenness centrality, closeness centrality, eigenvector centrality, PageRank, Hyperlink-Induced Topic Search(HITS), ProfitLeader, Gravity and Weighted Formal Concept Analysis(WFCA). It is demonstrated that LNC ranks nodes effectively and outperforms several state-of-theart algorithms. INDEX TERMS Complex networks, influential nodes, local structure, neighbor contribution.
Identification of Influential nodes in complex networks is challenging due to the largely scaled data and network sizes, and frequently changing behaviors of the current topologies. Various application scenarios like disease transmission and immunization, software virus infection and disinfection, increased product exposure and rumor suppression, etc., are applicable domains in the corresponding networks where identification of influential nodes is crucial. Though a lot of approaches are proposed to address the challenges, most of the relevant research concentrates only on single and limited aspects of the problem. Therefore, we propose Global Structure Model (GSM) for influential nodes identification that considers self-influence as well as emphasizes on global influence of the node in the network. We applied GSM and utilized Susceptible Infected Recovered model to evaluate its efficiency. Moreover, various standard algorithms such as Betweenness Centrality, Profit Leader, H-Index, Closeness Centrality, Hyperlink Induced Topic Search, Improved K-shell Hybrid, Density Centrality, Extended Cluster Coefficient Ranking Measure, and Gravity Index Centrality are employed as baseline benchmarks to evaluate the performance of GSM. Similarly, we used seven real-world and two synthetic multi-typed complex networks along-with different well-known datasets for experiments. Results analysis indicates that GSM outperformed the baseline algorithms in identification of influential node(s).
Identifying communities in dynamic networks is essential for exploring the latent network structures, understanding network functions, predicting network evolution, and discovering abnormal network events. Many dynamic community detection methods have been proposed from different viewpoints. However, identifying the community structure in dynamic networks is very challenging due to the difficulty of parameter tuning, high time complexity and detection accuracy decreasing as time slices increase. In this paper, we present a dynamic community detection framework based on information dynamics and develop a dynamic community detection algorithm called DCDID (dynamic community detection based on information dynamics), which uses a batch processing technique to incrementally uncover communities in dynamic networks. DCDID employs the information dynamics model to simulate the exchange of information among nodes and aims to improve the efficiency of community detection by filtering out the unchanged subgraph. To illustrate the effectiveness of DCDID, we extensively test it on synthetic and real-world dynamic networks, and the results demonstrate that the DCDID algorithm is superior to the representative methods in relation to the quality of dynamic community detection.
Efficient identification of influential nodes is one of the essential aspects in the field of complex networks, which has excellent theoretical and practical significance in the real world. A valuable number of approaches have been developed and deployed in these areas where just a few have used centrality measures along with their concerning deficiencies and limitations in their studies. Therefore, to resolve these challenging issues, we propose a novel effective distance-based centrality (EDBC) algorithm for the identification of influential nodes in concerning networks. EDBC algorithm comprises factors such as the power of K-shell, degree nodes, effective distance, and numerous levels of neighbor’s influence or neighborhood potential. The performance of the proposed algorithm is evaluated on nine real-world networks, where a susceptible infected recovered (SIR) epidemic model is employed to examine the spreading dynamics of each node. Simulation results demonstrate that the proposed algorithm outperforms the existing techniques such as eigenvector, betweenness, closeness centralities, hyperlink-induced topic search, H-index, K-shell, page rank, profit leader, and gravity over a valuable margin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.