Determining the links between breeding populations and the pressures, threats and conditions they experience presents a challenge for the conservation of migratory birds which can use multiple sites separated by hundreds to thousands of kilometres. Furthermore, migratory connectivity – the connections made by migrating individuals between networks of breeding and non‐breeding sites – has important implications for population dynamics. The Whinchat Saxicola rubetra is declining across its range, and tracking data from a single African non‐breeding site implies high migratory spread. We used geolocators to describe the migration routes and non‐breeding areas of 20 Whinchats from three British breeding populations. As expected, migratory spread was high, with birds from the three populations overlapping across a wide area of West Africa. On average, in non‐breeding areas, British breeding Whinchats were located 652 km apart from one another, with some likely to share non‐breeding areas with individuals from breeding populations as far east as Russia. Four males made a direct non‐breeding season movement to a second, more westerly, non‐breeding location in January. Autumn migration was through Iberia and around the western edge of the Sahara Desert, whereas spring migration was more direct, indicating an anticlockwise loop migration. Weak migratory connectivity implies that Whinchat populations are somewhat buffered against local changes in non‐breeding conditions. If non‐breeding season processes have played a role in the species’ decline, then large‐scale drivers are likely to be the cause, although processes operating on migration, or interactions between breeding and non‐breeding processes, cannot be ruled out.
White-clawed crayfish Austropotamobius pallipes are usually associated with stony substrates, tree roots, or refuges in submerged banks. The River Ivel has the last known population of white-clawed crayfish in Bedfordshire. Prior to 2005, much of the bed comprised uniform silt, plus leaf-litter. Stands of reedmace Typha latifolia and other emergent vegetation were localised in less shaded areas. Initial survey results suggested a population at low abundance. A low-cost monitoring strategy was started in 2001 and continued three times a year to 2005, using engineering bricks, which offer artificial refuges. Crayfish are counted when bricks are lifted periodically. De-silting of c. 430 m river was carried out in February 2005, to improve habitat and to maintain the flood capacity in the channel upstream of a mill weir. Additional bricks were deployed a few weeks in advance of de-silting, then bricks and crayfish were lifted prior to dredging and were returned the next day. Starting upstream, soft, wet mud was dredged out, placed on the bank and searched manually for crayfish. Banks, tree roots and shallow margins were left undisturbed. In all, 4,142 crayfish were found in dredgings from a 430 m length of the mid channel. Crayfish were strongly associated with emergent vegetation, but many were present below the surface of the silt. Crayfish released in the dredged channel immediately burrowed into the silt retained on the channel margins. Monitoring after dredging showed no change in abundance in the main area with in-bank refuges and lots of bricks, but there was an increase in occupancy of bricks in an area where most crayfish had been in emergent vegetation.Key-words: white-clawed crayfish, habitat, mud, mitigation, monitoring. Les écrevisses étaient fortement associées à la végétation émergente, mais beaucoup étaient présentes aussi sous la surface du limon. Les écrevisses relâchées dans le cours d'eau dragué se sont aussitôt ré-enfouies dans le limon déposé sur les bords du cours d'eau. Le suivi réalisé après le dragage n'a pas mis en évidence de modification d'abondance dans le secteur principal avec les refuges en berge et beaucoup de briques, mais il a en revanche permis de constater une augmentation de l'occupation des briques dans un secteur où la plupart des écrevisses étaient précédemment dans la végétation émergente. ÉCREVISSES À PATTES BLANCHES DANS LES HABITATS
Life history traits and environmental conditions influence reproductive success in animals, and consequences of these can influence subsequent survival and recruitment into breeding populations. Understanding influences on demographic rates is required to determine the causes of decline. Migratory species experience spatially and temporally variable conditions across their annual cycle, making identifying where the factors influencing demographic rates operate challenging. Here, we use the Whinchat Saxicola rubetra as a model declining long-distance migrant bird. We analyse 10 years of data from 247 nesting attempts and 2519 post-fledging observations of 1193 uniquely marked nestlings to examine the influence of life history traits, habitat characteristics and weather on survival of young from the nestling stage to local recruitment into the natal population. We detected potential silver spoon effects where conditions during the breeding stage influence subsequent apparent local recruitment rates, with higher recruitment for fledglings from larger broods, and recruitment rate negatively related to rainfall that chicks experienced in-nest. Additionally, extreme temperatures experienced pre-and post-fledging increased fledging success and recruitment rate. However, we could not determine whether this was driven by temperature influencing mortality during the post-fledging period or later in the annual cycle.Brood size declined with hatching date. In-nest survival increased with brood size and was highest at local temperature extremes. Furthermore, nest survival was highest at nests surrounded with 40%-60% vegetation cover of Bracken Pteridium aquilinum within 50 m of the nest. Our results show that breeding phenology and environmental factors may influence fledging success and recruitment in songbird populations, with conditions experienced during the nestling stage influencing local recruitment rates in Whinchats (i.e. silver spoon effect). Recruitment rates are key drivers of songbird population dynamics. Our results help identify some of the likely breeding season mechanisms that could be important population drivers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.