We determined whether binocular central scotomas above or below the preferred retinal locus affect detection of hazards (pedestrians) approaching from the side. Seven participants with central field loss (CFL), and seven age-and sex-matched controls with normal vision (NV), each completed two sessions of 5 test drives (each approximately 10 minutes long) in a driving simulator. Participants pressed the horn when detecting pedestrians that appeared at one of four eccentricities (-14°, -4°, left, 4°, or 14°, right, relative to car heading). Pedestrians walked or ran towards the travel lane on a collision course with the participant’s vehicle, thus remaining in the same area of the visual field, assuming participant's steady forward gaze down the travel lane. Detection rates were nearly 100% for all participants. CFL participant reaction times were longer (median 2.27s, 95% CI 2.13 to 2.47) than NVs (median 1.17s, 95%CI 1.10 to 2.13; difference p<0.01), and CFL participants would have been unable to stop for 21% of pedestrians, compared with 3% for NV, p<0.001. Although the scotomas were not expected to obscure pedestrian hazards, gaze tracking revealed that scotomas did sometimes interfere with detection; late reactions usually occurred when pedestrians were entirely or partially obscured by the scotoma (time obscured correlated with reaction times, r = 0.57, p<0.001). We previously showed that scotomas lateral to the preferred retinal locus delay reaction times to a greater extent; however, taken together, the results of our studies suggest that any binocular CFL might negatively impact timely hazard detection while driving and should be a consideration when evaluating vision for driving.
Summary:We describe the design of a driving simulator study to determine the effect of central visual field loss (due to macular disease) on pedestrian detection when driving. Pilot data suggest that a scotoma (blind area) in the central visual field can impair driving by increasing response time to hazardous circumstances.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.